Skip to main content

MHD Turbulence, Turbulent Dynamo and Applications

  • Chapter
  • First Online:
Magnetic Fields in Diffuse Media

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 407))

Abstract

MHD Turbulence is common in many space physics and astrophysics environments. We first discuss the properties of incompressible MHD turbulence. A well-conductive fluid amplifies initial magnetic fields in a process called small-scale dynamo. Below equipartition scale for kinetic and magnetic energies the spectrum is steep (Kolmogorov \(-5/3\)) and is represented by critically balanced strong MHD turbulence. In this Chapter we report the basic reasoning behind universal nonlinear small-scale dynamo and the inertial range of MHD turbulence. We measured the efficiency of the small-scale dynamo C E  = 0. 05, Kolmogorov constant C K  = 4. 2 and anisotropy constant C A  = 0. 63 for MHD turbulence in high-resolution direct numerical simulations. We also discuss so-called imbalanced or cross-helical MHD turbulence which is relevant for in many objects, most prominently in the solar wind. We show that properties of incompressible MHD turbulence are similar to the properties of Alfvénic part of MHD cascade in compressible turbulence. The other parts of the cascade evolve according to their own dynamics. The slow modes are being cascaded by Alfvénic modes, while fast modes create an independent cascade. We show that different ways of decomposing compressible MHD turbulence into Alfvén, slow and fast modes provide consistent results and are useful in understanding not only turbulent cascade, but its interaction with fast particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The anisotropy should be understood in terms of local magnetic field direction, i.e. the magnetic field direction at the given scale. The original treatment, e.g. the closure relations employed, in the Goldreich–Sridhar paper uses the global frame of reference which was noticed later in Lazarian et al. (1999) and used in the numerical works that validated the theory (Cho et al. 20002002; Maron et al. 2001).

  2. 2.

    The latter, \(\int \mathbf{v} \cdot \mathbf{B}\,d^{3}x\) is a quantity conserved in the absence of dissipation.

  3. 3.

    We assume that imbalanced turbulence is “strong” as long as the applicability of weak Alfvénic turbulence breaks down. This requires that at least one component is perturbed strongly. In the imbalanced turbulence the amplitude of the dominant component is larger, so that in the transition to strong regime the applicability of weak cascading of the subdominant component breaks down first.

  4. 4.

    Throughout this Chapter we assume that w + is the larger-amplitude wave. This choice, however, is purely arbitrary and corresponds to the choice of positive versus negative total cross-helicity.

  5. 5.

    In the limiting case of compressibility going to zero, the fast modes are sound waves with phase speed going to infinity.

  6. 6.

    One way to remove the effect by the wandering of field lines is to drive turbulence anisotropically in such a way as \(k_{\perp,L}\delta V \sim k_{\|,L}V _{A}\), where k  ⊥ , L and \(k_{\|,L}\) stand for the wavelengths of the driving scale and δ V is the r.m.s. velocity. By increasing the \(k_{\perp,L}/k_{\|,L}\) ratio, we can reduce the degree of mixing of different wave modes.

  7. 7.

    A claim in the literature is that a strong coupling of incompressible and compressible motions is required to explain simulations that show fast decay of MHD turbulence. There is not true. The incompressible motions decay themselves in just one Alfvén crossing time.

  8. 8.

    In astrophysics spatial or temporal averaging is used.

  9. 9.

    In practical terms this means that instead of obtaining S p as a function of r, one gets S p as a function of S 3, which is nonlinear in a way to correct for the distortions of S p.

  10. 10.

    The cited paper introduces the model of compressible turbulence which it calls Kolmogorov–Burgers model. Within this model turbulence goes first along the Kolmogorov scaling and then, at small scales forms shocks. The model was motivated by the numerical measurements of the turbulence spectrum that indicated the index of supersonic turbulence close to \(-5/3\). This however was shown to be an artifact of numerical simulations with lower resolution. Simulations in Kritsuk et al. (2007) showed that the slope with \(-5/3\) is the result of the numerical bottleneck and the actual slope of the highly compressible turbulence is − 2, as was expected earlier.

  11. 11.

    The violation of frozen in condition in turbulence is implicit in LV99. It was stated explicitly in Vishniac et al. (1999) and discussed in terms of star formation in Lazarian (2005). The first formal quantitative study was performed in Eyink (2011).

References

  • Alexakis, A., Mininni, P.D., Pouquet, A: Phys. Rev. E 72(4), 046301 (2005).: doi10.1103/ PhysRevE.72.046301

    Google Scholar 

  • Aluie, H., Eyink, G.L.: Phys. Rev. Lett. 104(8), 081101 (2010). doi:10.1103/ PhysRevLett.104.081101

    ADS  Google Scholar 

  • Armstrong, J.W., Rickett, B.J., Spangler, S.R.: Astrophys. J. 443, 209 (1995). doi:10.1086/175515

    ADS  Google Scholar 

  • Benzi, R., Struglia, M.V., Tripiccione, R.: eprint arXiv:chao-dyn/9509018, p. 9018 (1995)

    Google Scholar 

  • Beresnyak, A.: Phys. Rev. Lett. 106(7), 075001 (2011). doi:10.1103/PhysRevLett.106.075001

    ADS  Google Scholar 

  • Beresnyak, A.: Phys. Rev. Lett. 108(3), 035002 (2012). doi:10.1103/PhysRevLett.108.035002

    ADS  Google Scholar 

  • Beresnyak, A.: Mon. Not. R. Astron. Soc. 422, 3495 (2012). doi:10.1111/j.1365-2966.2012. 20859.x

    ADS  Google Scholar 

  • Beresnyak, A.: (2014). ArXiv e-prints

    Google Scholar 

  • Beresnyak, A., Lazarian, A., Astrophys. J. 640, L175 (2006). DOI 10.1086/ 503708

    ADS  Google Scholar 

  • Beresnyak, A., Lazarian, A.: Astrophys. J. 678, 961 (2008). doi:10.1086/587052

    ADS  Google Scholar 

  • Beresnyak, A., Lazarian, A.: Astrophys. J. 682, 1070 (2008). doi:10.1086/589428

    ADS  Google Scholar 

  • Beresnyak, A., Lazarian, A.: Astrophys. J. 702, 1190 (2009). doi:10.1088/0004-637X/702/2/1190

    ADS  Google Scholar 

  • Beresnyak, A., Lazarian, A.: Astrophys. J. 702, 460 (2009). doi:10.1088/0004-637X/702/1/460

    ADS  Google Scholar 

  • Beresnyak, A., Lazarian, A.: Astrophys. J. 722, L110 (2010). doi:10.1088/2041-8205/722/1/L110

    ADS  Google Scholar 

  • Beresnyak, A., Jones, T.W., Lazarian, A.: Astrophys. J. 707, 1541 (2009). doi:10.1088/0004-637X/707/2/1541

    ADS  Google Scholar 

  • Beresnyak, A., Lazarian, A., Cho, J.: Astrophys. J. 624, L93 (2005). doi:10.1086/430702

    ADS  Google Scholar 

  • Beresnyak, A., Yan, H., Lazarian, A.: Astrophys. J. 728, 60 (2011). doi:10.1088/0004-637X/728/1/60

    ADS  Google Scholar 

  • Beresnyak, A., Xu, H., Li, H., Schlickeiser, R.: Astrophys. J. 771, 131 (2013). doi:10.1088/0004-637X/771/2/131

    ADS  Google Scholar 

  • Biskamp, D.: Magnetic Reconnection in Plasmas. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Biskamp, D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Boldyrev, S.: Astrophys. J. 569, 841 (2002). doi:10.1086/339403

    ADS  Google Scholar 

  • Boldyrev, S.: Astrophys. J. 626, L37 (2005). doi:10.1086/431649

    ADS  Google Scholar 

  • Boldyrev, S.: Phys. Rev. Lett. 96(11), 115002 (2006). doi:10.1103/PhysRevLett.96.115002

    ADS  Google Scholar 

  • Brandenburg, A., Subramanian, K.: Phys. Rep. 417, 1 (2005). doi:10.1016/j.physrep.2005.06.005

    ADS  MathSciNet  Google Scholar 

  • Brunetti, G., Lazarian, A.: Mon. Not. R. Astron. Soc. 378, 245 (2007). doi:10.1111/j.1365-2966.2007.11771.x

    ADS  Google Scholar 

  • Chandran, B.D.G: Phys. Rev. Lett. 85, 4656 (2000). doi:10.1103/PhysRevLett.85.4656

    ADS  Google Scholar 

  • Chandran, B.D.G.: Astrophys. J. 685, 646 (2008). doi:10.1086/589432

    ADS  Google Scholar 

  • Chepurnov, A., Lazarian, A.: Astrophys. J. 710, 853 (2010). doi:10.1088/0004-637X/710/1/853

    ADS  Google Scholar 

  • Cho, J.: Astrophys. J. 621, 324 (2005). doi:10.1086/427493

    ADS  Google Scholar 

  • Cho, J., Lazarian, A.: Phys. Rev. Lett. 88(24), 245001 (2002). doi:10.1103/PhysRevLett.88.245001

    ADS  Google Scholar 

  • Cho, J., Lazarian, A.: Mon. Not. R. Astron. Soc. 345, 325 (2003). doi:10.1046/j.1365-8711.2003.06941.x

    ADS  Google Scholar 

  • Cho, J., Lazarian, A.: Astrophys. J. 615, L41 (2004). doi:10.1086/425215

    ADS  Google Scholar 

  • Cho, J., Lazarian, A.: Astrophys. J. 780, 30 (2014). doi:10.1088/0004-637X/780/1/30

    ADS  Google Scholar 

  • Cho, J., Vishniac, E.T.: Astrophys. J. 539, 273 (2000). doi:10.1086/309213

    ADS  Google Scholar 

  • Cho, J., Vishniac, E.T.: Astrophys. J. 538, 217 (2000). doi:10.1086/309127

    ADS  Google Scholar 

  • Cho, J., Lazarian, A., Vishniac, E.T.: Astrophys. J. 564, 291 (2002). doi:10.1086/324186

    ADS  Google Scholar 

  • Cho, J., Lazarian, A., Vishniac, E.T.: Astrophys. J. 566, L49 (2002). doi:10.1086/339453

    ADS  Google Scholar 

  • Cho, J., Lazarian, A., Vishniac, E.T.: Astrophys. J. 595, 812 (2003). doi:10.1086/377515

    ADS  Google Scholar 

  • Cho, J., Lazarian, A., Vishniac, E.T.: In: Falgarone, E., Passot, T. (eds.) Turbulence and Magnetic Fields in Astrophysics. Lecture Notes in Physics, vol. 614, pp. 56–98. Springer, Berlin (2003)

    Google Scholar 

  • Cho, J., Vishniac, E.T., Beresnyak, A., Lazarian, A., Ryu, D.: Astrophys. J. 693, 1449 (2009). doi:10.1088/0004-637X/693/2/1449

    ADS  Google Scholar 

  • Dobrowolny, M., Mangeney, A., Veltri, P.: Phys. Rev. Lett. 45, 144 (1980). doi:10.1103/ PhysRevLett.45.144

    ADS  MathSciNet  Google Scholar 

  • Draine, B.T., Lazarian, A.: Astrophys. J. 512, 740 (1999). doi:10.1086/306809

    ADS  Google Scholar 

  • Dubrulle, B.: Phys. Rev. Lett. 73, 959 (1994). doi:10.1103/PhysRevLett.73.959

    ADS  Google Scholar 

  • de Gouveia Dal Pino, E.M., Lazarian, A.: Astron. Astrophys. 441, 845 (2005). doi:10.1051/0004-6361:20042590

    Google Scholar 

  • Elmegreen, B.G., Scalo, J.: Ann. Rep. Astron. Astrophys. 42, 211 (2004). doi:10.1146/ annurev.astro.41.011802.094859

    ADS  Google Scholar 

  • Eyink, G.L.: Physica D Nonlinear Phenomena 207, 91 (2005). doi:10.1016/j.physd.2005.05.018

    ADS  MATH  MathSciNet  Google Scholar 

  • Eyink, G.L.: Phys. Rev. E 83(5), 056405 (2011). doi:10.1103/PhysRevE.83.056405

    ADS  Google Scholar 

  • Eyink, G.L., Lazarian, A., Vishniac, E.T.: Astrophys. J. 743, 51 (2011). doi:10.1088/0004-637X/743/1/51

    ADS  Google Scholar 

  • Eyink, G., Vishniac, E., Lalescu, C., Aluie, H., Kanov, K., Bürger, K., Burns, R., Meneveau, C., Szalay, A.: Nature 497, 466 (2013). doi:10.1038/nature12128

    ADS  Google Scholar 

  • Falgarone, E.: In: Star Formation, Then and Now (2007)

    Google Scholar 

  • Falgarone, E., Pineau Des Forêts, G., Hily-Blant, P., Schilke, P.: In: IAU Symposium, vol. 235, p. 143P (2005)

    Google Scholar 

  • Farmer, A.J., Goldreich, P.: Astrophys. J. 604, 671 (2004). doi:10.1086/382040

    ADS  Google Scholar 

  • Frisch, U.: Turbulence. The legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  • Galtier, S., Nazarenko, S.V., Newell, A.C., Pouquet, A.: J. Plasma Phys. 63, 447 (2000). doi:10.1017/S0022377899008284

    ADS  Google Scholar 

  • Galtier, S., Pouquet, A., Mangeney, A.: Phys. Plasmas 12(9), 092310 (2005). doi:10.1063/ 1.2052507

    ADS  Google Scholar 

  • Gogoberidze, G.: Phys. Plasmas 14(2), 022304 (2007). doi:10.1063/1.2437753

    ADS  Google Scholar 

  • Goldreich, P., Sridhar, S.: Astrophys. J. 438, 763 (1995). doi:10.1086/175121

    ADS  Google Scholar 

  • Goldreich, P., Sridhar, S.: Astrophys. J. 640, L159 (2006). doi:10.1086/503668

    ADS  Google Scholar 

  • Goldstein, B.E.,Smith, E.J., Balogh, A., Horbury, T.S., Goldstein, M.L., Roberts, D.A.: Geophys. Res. Lett. 22, 3393 (1995). doi:10.1029/95GL03183

    ADS  Google Scholar 

  • Gotoh, T., Fukayama, D., Nakano, T.: Phys. Fluids 14, 1065 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  • Grappin, R., Leorat, J., Pouquet, A.: Astron. Astrophys. 126, 51 (1983)

    ADS  Google Scholar 

  • Haugen, N.E., Brandenburg, A., Dobler, W.: Phys. Rev. E 70(1), 016308 (2004). doi:10.1103/ PhysRevE.70.016308

    ADS  Google Scholar 

  • Heiles, C.: Astrophys. J. 481, 193 (1997). doi:10.1086/304033

    ADS  Google Scholar 

  • Hily-Blant, P., Falgarone, E., Astron. Astrophys. 469, 173 (2007). doi:10.1051/0004-6361:20054565

    ADS  Google Scholar 

  • Hily-Blant, P., Falgarone, E., Pety, J.: Astron. Astrophys. 481, 367 (2008). doi:10.1051/0004-6361:20078423

    ADS  Google Scholar 

  • Howes, G.G., Cowley, S.C., Dorland, W., Hammett, G.W., Quataert, E., Schekochihin, A.A.: Astrophys. J. 651, 590 (2006). doi:10.1086/506172

    ADS  Google Scholar 

  • Iroshnikov, P.: Sov. Astron. 7, 566 (1964)

    ADS  MathSciNet  Google Scholar 

  • Jacobson, A.R., Moses, R.W.: Phys. Rev. A 29, 3335 (1984). doi:10.1103/PhysRevA.29.3335

    ADS  Google Scholar 

  • Kadomtsev, B.B., Pogutse, O.P.: Sov. J. Exp. Theor. Phys. 38, 283 (1974)

    ADS  Google Scholar 

  • Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Phys. Fluids 15, L21 (2003). doi:10.1063/1.1539855

    ADS  Google Scholar 

  • Käpylä, P.J., Korpi, M.J., Brandenburg, A.: Astron. Astrophys. 500, 633 (2009). doi:10.1051/0004-6361/200811498

    ADS  MATH  Google Scholar 

  • Kazantsev, A.P.: Sov. J. Exp. Theor. Phys. 26, 1031 (1968)

    ADS  Google Scholar 

  • Kolmogorov, A.: Akademiia Nauk SSSR Doklady 30, 301 (1941)

    ADS  Google Scholar 

  • Kowal, G., Lazarian, A.: Astrophys. J. 720, 742 (2010). doi:10.1088/0004-637X/720/1/742

    ADS  Google Scholar 

  • Kowal, G., Lazarian, A., Beresnyak, A.: Astrophys. J. 658, 423 (2007). doi:10.1086/511515

    ADS  Google Scholar 

  • Kowal, G., Lazarian, A., Vishniac, E.T., Otmianowska-Mazur, K.: Astrophys. J. 700, 63 (2009). doi:10.1088/0004-637X/700/1/63

    ADS  Google Scholar 

  • Kowal, G., Lazarian, A., Vishniac, E.T., Otmianowska-Mazur, K.: Nonlinear Process. Geophys. 19, 297 (2012). doi:10.5194/npg-19-297-2012

    ADS  Google Scholar 

  • Kowal, G., de Gouveia Dal Pino, E.M., Lazarian, A.: Phys. Rev. Lett. 108(24), 241102 (2012). doi:10.1103/PhysRevLett.108.241102

    Google Scholar 

  • Kraichnan, R.: Phys. Fluids 8, 1385 (1965)

    ADS  MathSciNet  Google Scholar 

  • Kraichnan, R.H., Nagarajan, S: Phys. Fluids 10, 859 (1967). doi:10.1063/1.1762201

    ADS  MATH  Google Scholar 

  • Krause, F., Raedler, K.H.: Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon Press, Oxford (1980)

    MATH  Google Scholar 

  • Kritsuk, A.G., Norman, M.L., Padoan, P., Wagner, R.: Astrophys. J. 665, 416 (2007). doi:10.1086/ 519443

    ADS  Google Scholar 

  • Kulsrud, R.M., Anderson, S.W.: Astrophys. J. 396, 606 (1992). doi:10.1086/171743

    ADS  Google Scholar 

  • Laing, R.A., Bridle, A.H., Parma, P., Murgia, M.: Mon. Not. R. Astron. Soc. 391, 521 (2008). doi:10.1111/j.1365-2966.2008.13895.x

    ADS  Google Scholar 

  • Lazarian, A.: Astron. Astrophys. 264, 326 (1992)

    ADS  Google Scholar 

  • Lazarian, A.: Astrophys. J. 645, L25 (2006). doi:10.1086/505796

    ADS  Google Scholar 

  • Lazarian, A.: In: Haverkorn, M., Goss, W.M. (eds.) SINS - Small Ionized and Neutral Structures in the Diffuse Interstellar Medium. Astronomical Society of the Pacific Conference Series, vol. 365, p. 324 (2007)

    Google Scholar 

  • Lazarian, A.: In: de Gouveia dal Pino, E.M., Lugones, G., Lazarian, A. (eds.) Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures. American Institute of Physics Conference Series, vol. 784, pp. 42–53 (2005). doi:10.1063/1.2077170

    ADS  Google Scholar 

  • Lazarian, A.: Space Sci. Rev. 181, 1 (2014).

    ADS  Google Scholar 

  • Lazarian, A., Beresnyak, A.: Mon. Not. R. Astron. Soc. 373, 1195 (2006). doi:10.1111/j.1365-2966.2006.11093.x

    ADS  Google Scholar 

  • Lazarian, A., Opher, M.: Astrophys. J. 703, 8 (2009). doi:10.1088/0004-637X/703/1/8

    ADS  Google Scholar 

  • Lazarian, A., Vishniac, E.T.: Astrophys. J. 517, 700 (1999). doi:10.1086/307233

    ADS  Google Scholar 

  • Lazarian, A., Vishniac, E.T., Cho, J.: Astrophys. J. 603, 180 (2004). doi:10.1086/381383

    ADS  Google Scholar 

  • Lazarian, A., Esquivel, A., Crutcher, R., Astrophys. J. 757, 154 (2012). doi:10.1088/0004-637X/757/2/154

    ADS  Google Scholar 

  • Lazarian, A., Vlahos, L., Kowal, G., Yan, H., Beresnyak, A., de Gouveia Dal Pino, E.M.: Space Sci. Rev. 173, 557 (2012).

    Google Scholar 

  • Lithwick, Y., Goldreich, P., Sridhar, S.: Astrophys. J. 655, 269 (2007). doi:10.1086/509884

    ADS  Google Scholar 

  • Lyutikov, M., Lazarian, A.: Soc. Sci. Res. 178, 459 (2013). doi:10.1007/s11214-013-9989-2

    ADS  Google Scholar 

  • Maron, J., Goldreich, P.: Astrophys. J. 554, 1175 (2001). doi:10.1086/321413

    ADS  Google Scholar 

  • Mason, J., Cattaneo, F., Boldyrev, S.: Phys. Rev. Lett. 97(25), 255002 (2006). doi:10.1103/PhysRevLett.97.255002

    ADS  Google Scholar 

  • Matthaeus, W.H., Lamkin, S.L.: Phys. Fluids 28, 303 (1985). doi:10.1063/1.865147

    ADS  Google Scholar 

  • Matthaeus, W.H., Lamkin, S.L.: Phys. Fluids 29, 2513 (1986). doi:10.1063/1.866004

    ADS  Google Scholar 

  • Matthaeus, W.H., Montgomery, D.: Ann. N Y Acad. Sci. 357, 203 (1980). doi:10.1111/j.1749-6632.1980.tb29687.x

    ADS  Google Scholar 

  • McKee, C.F., Ostriker, E.C.: Ann. Rep. Astron. Astrophys. 45, 565 (2007). doi:10.1146/ annurev.astro.45.051806.110602

    ADS  Google Scholar 

  • Melrose, D.B.: Plasma Astrohysics. Nonthermal processes in Diffuse Magnetized Plasmas - vol. 1: The Emission, Absorption and Transfer of Waves in Plasmas; vol. 2: Astrophysical Applications. Gordon and Breach, New York (1980)

    Google Scholar 

  • Monin, A.S., Iaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2 /rev. and enlarged edn. MIT Press, Cambridge (1975)

    Google Scholar 

  • Müller, W.C., Biskamp, D.: Phys. Rev. Lett. 84, 475 (2000). doi:10.1103/PhysRevLett.84.475

    ADS  Google Scholar 

  • Müller, W.C., Grappin, R.: Phys. Rev. Lett. 95(11), 114502 (2005). doi:10.1103/PhysRev Lett.95.114502

    ADS  Google Scholar 

  • Ostriker, E.C., Stone, J.M., Gammie, C.F.: Astrophys. J. 546, 980 (2001). doi:10.1086/318290

    ADS  Google Scholar 

  • Padoan, P., Jimenez, R., Juvela, M., Nordlund, A.A.: Astrophys. J. 604, L49 (2004). doi:10.1086/ 383308

    ADS  Google Scholar 

  • Perez, J.C., Boldyrev, S.: Phys. Rev. Lett. 102(2), 025003 (2009). doi:10.1103/PhysRevLett. 102.025003

    ADS  Google Scholar 

  • Petrosian, V., Yan, H., Lazarian, A.: Astrophys. J. 644, 603 (2006).

    ADS  Google Scholar 

  • Politano, H., Pouquet, A.: Phys. Rev. E 57, R21 (1998). doi:10.1103/PhysRevE.57.R21. URL http://link.aps.org/doi/10.1103/PhysRevE.57.R21

  • Pouquet, A., Frisch, U., Léorat, J.: J. Fluid Mech. 77(02), 321 (1976)

    ADS  MATH  Google Scholar 

  • Pouquet, A., Sulem, P.L., Meneguzzi, M.: Phys. Fluids 31, 2635 (1988). doi:10.1063/1.866541

    ADS  Google Scholar 

  • Priest, E., Forbes, T.: Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Ryu, D., Kang, H., Cho, J., Das, S.: Science 320, 909 (2008). doi:10.1126/science.1154923

    ADS  Google Scholar 

  • Santos-Lima, R., de Gouveia Dal Pino, E.M., Kowal, G., Falceta-Gonçalves, D., Lazarian, A., Nakwacki, M.S.: Astrophys. J. 781, 84 (2014). doi:10.1088/0004-637X/781/2/84

    Google Scholar 

  • Schekochihin, A.A., Cowley, S.C.: Phys. Plasmas 13(5), 056501 (2006). doi:10.1063/1.2179053

    ADS  Google Scholar 

  • Schekochihin, A.A., Cowley, S.C.: Turbulence and Magnetic Fields in Astrophysical Plasmas, p. 85–+. Springer, Berlin (2007)

    Google Scholar 

  • Schekochihin, A.A., Cowley, S.C., Taylor, S.F., Maron, J.L., McWilliams, J.C.: Astrophys. J. 612, 276 (2004). doi:10.1086/422547

    ADS  Google Scholar 

  • Schekochihin, A.A., Cowley, S.C., Kulsrud, R.M., Rosin, M.S., Heinemann, T.: Phys. Rev. Lett. 100(8), 081301 (2008). doi:10.1103/PhysRevLett.100.081301

    ADS  Google Scholar 

  • Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., Tatsuno, T.: Astrophys. J. 182, 310 (2009). doi:10.1088/0067-0049/182/1/310

    ADS  Google Scholar 

  • Schlickeiser, R.: Cosmic Ray Astrophysics. Springer, Berlin (2002)

    Google Scholar 

  • Schlüter, A., Biermann, I.: Zeitschrift Naturforschung Teil A 5, 237 (1950)

    ADS  MATH  Google Scholar 

  • Schober, J., Schleicher, D., Federrath, C., Glover, S., Klessen, R.S., Banerjee, R.: Astrophys. J. 754, 99 (2012). doi:10.1088/0004-637X/754/2/99

    ADS  Google Scholar 

  • Schober, J., Schleicher, D.R.G., Klessen, R.S.: Astron. Astrophys. 560, A87 (2013). doi:10.1051/ 0004-6361/201322185

    ADS  Google Scholar 

  • She, Z.S., Leveque, E.: Phys. Rev. Lett. 72, 336 (1994). doi:10.1103/PhysRevLett.72.336

    ADS  Google Scholar 

  • Speiser, T.W.: Plan. Space Sci. 18, 613 (1970). doi:10.1016/0032-0633(70)90136-4

    ADS  Google Scholar 

  • Stanimirović, S., Weisberg, J.M., Hedden, A., Devine, K., Green, T., Anderson, S.B.: Astrophys. Space Sci. 292, 103 (2004). doi:10.1023/B:ASTR.0000045005.36554.36

    ADS  Google Scholar 

  • Strauss, H.R.: Phys Fluids 19(1), 134 (1976). doi:10.1063/1.861310. URL http://link.aip.org/link/?PFL/19/134/1

  • Stone, J.M., Ostriker, E.C., Gammie, C.F.: Astrophys. J. 508, L99 (1998). doi:10.1086/311718

    ADS  Google Scholar 

  • Thompson, C., Blaes, O.: Phys. Rev. D 57, 3219 (1998). doi:10.1103/PhysRevD.57.3219

    ADS  MathSciNet  Google Scholar 

  • Vázquez-Semadeni, E., Gómez, G.C., Jappsen, A.K., Ballesteros-Paredes, J., González, R.F., Klessen, R.S.: Astrophys. J. 657, 870 (2007). doi:10.1086/510771

    ADS  Google Scholar 

  • Vainshtein, S., Zeldovich, Y.: Physics-Uspekhi 15(2), 159 (1972)

    Google Scholar 

  • Vishniac, E.T., Cho, J.: Astrophys. J. 550, 752 (2001). doi:10.1086/319817

    ADS  Google Scholar 

  • Vishniac, E.T., Lazarian, A.: Astrophys. J. 511, 193 (1999). doi:10.1086/306643

    ADS  Google Scholar 

  • Xu, S., Lazarian, A.: (2014). In preparation

    Google Scholar 

  • Yan, H., Lazarian, A.: Phys. Rev. Lett. 89, 281102 (2002). doi:10.1103/PhysRevLett.89.281102

    ADS  Google Scholar 

  • Yan, H., Lazarian, A.: Astrophys. J. 614, 757 (2004). doi:10.1086/423733

    ADS  Google Scholar 

  • Yan, H., Lazarian, A.: Astrophys. J. 677, 1401 (2008). doi:10.1086/533410

    ADS  Google Scholar 

  • Yan, H., Lazarian, A.: Astrophys. J. 731, 35 (2011). doi:10.1088/0004-637X/731/1/35

    ADS  Google Scholar 

  • Yan, H., Lazarian, A., Draine, B.T.: Astrophys. J. 616, 895 (2004). doi:10.1086/425111

    ADS  Google Scholar 

  • Yeung, P.K., Zhou, Y.: Phys. Rev. E 56, 1746 (1997). doi:10.1103/PhysRevE.56.1746

    ADS  Google Scholar 

  • Zank, G.P., Matthaeus, W.H.: Phys. Fluids 5, 257 (1993). doi:10.1063/1.858780

    ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

AB was supported by Humboldt Fellowship. AL acknowledges the support of the NSF grant AST-1212096, the Vilas Associate Award as well as the support of the NSF Center for Magnetic Self- Organization. In addition, AL thanks the International Institute of Physics (Natal, Brazil) and the Observatoire de Nice for its hospitality during writing this review. Discussions with Ethan Vishniac and Greg Eyink are acknowledged. We thank Siyao Xu for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Beresnyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beresnyak, A., Lazarian, A. (2015). MHD Turbulence, Turbulent Dynamo and Applications. In: Lazarian, A., de Gouveia Dal Pino, E., Melioli, C. (eds) Magnetic Fields in Diffuse Media. Astrophysics and Space Science Library, vol 407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44625-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44625-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44624-9

  • Online ISBN: 978-3-662-44625-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics