Skip to main content

Magnetic Field Measurement with Ground State Alignment

  • Chapter
  • First Online:

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 407))

Abstract

Observational studies of magnetic fields are crucial. We introduce a process “ground state alignment” as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (\(1\,\mathrm{G} \gtrsim B \gtrsim 10^{-15}\) G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here interstellar is understood in a general sense, which, for instance, includes refection nebulae.

  2. 2.

    Radiative pumping is much slower than magnetic mixing. Radiation was chosen as the quantization axis, nevertheless, which inevitably would lead to the nonzero coherence components. They were neglected in Hawkins (1955), however.

  3. 3.

    Modern theory of dust alignment, which is a very powerful way to study magnetic fields (see Lazarian 2007 and ref. therein) is also appealing to anisotropic radiation as the cause of alignment.

  4. 4.

    In quantum physics, quantum coherence means that subatomic particles are able to cooperate. These subatomic waves or particles not only know about each other, but are also highly interlinked by bands of shared electromagnetic fields so that they can communicate with each other.

  5. 5.

    To remind our readers, The Stokes parameters Q represents the linear polarization along e 1 minus the linear polarization along e 2; U refers to the polarization along \((\mathbf{e}_{\mathbf{1}} + \mathbf{e}_{\mathbf{2}})/\sqrt{2}\) minus the linear polarization along \((-\mathbf{e}_{\mathbf{1}} + \mathbf{e}_{\mathbf{2}})/\sqrt{2}\) (see Fig. 5.1, right).

  6. 6.

    To clarify, we do not distinguish between pumping by optical lines or UV lines, and name them simply “optical pumping”.

  7. 7.

    There are no energy splittings among them, the effect is only to provide more projections of angular momentum (see Yan and Lazarian 2007).

  8. 8.

    Only if hyperfine structure can be resolved, polarization can occur.

  9. 9.

    Since there is no alignment on the ground state and we can choose the direction of radiation as the quantization axis, α = θ.

  10. 10.

    Incidentally, these studies induced a local revolution in understanding of the solar spectra. We expect even deeper impact of the GSA studies. Indeed, the domain of the applicability of the GSA is really extensive and the consequences of the magnetic field and abundance studies are extremely important.

References

  • Abel, N.P., Ferland, G.J., O’Dell, C.R., Shaw, G., Troland, T.H.: Astrophys. J. 644, 344 (2006)

    Article  ADS  Google Scholar 

  • Beck, R.: 25th Texas Symposium on Relativistic Astrophysics (Texas 2010). In: Aharonian, F.A., Hofmann, W., Rieger, F.M. (eds.) American Institute of Physics Conference Series, vol. 1381, pp. 117–136 (2011)

    Google Scholar 

  • Brossel, J., Kastler, A., Winter, J.: J. Phys. Radium 13, 668 (1952)

    Article  Google Scholar 

  • Budker, D., Romalis, M.: Nat. Phys. 3, 227 (2007)

    Article  Google Scholar 

  • Carciofi, A.C., Bjorkman, J.E., Bjorkman, K.S.: In: Adamson, A., Aspin, C., Davis, C., Fujiyoshi, T. (eds.) Astronomical Polarimetry: Current Status and Future Directions. Astronomical Society of the Pacific Conference Series, vol. 343, p. 417. Astronomical Society of the Pacific, San Francisco (2005)

    Google Scholar 

  • Cohen-Tannoudji, C., Dupont-Roc, J., Haroche, S., Laloë, F.: Phys. Rev. Lett. 22, 758 (1969)

    Article  ADS  Google Scholar 

  • Crutcher, R.M.: Astrophys. Space Sci. 313, 141 (2008)

    Article  ADS  Google Scholar 

  • Crutcher, R.M., Troland, T.H.: Astrophys. J. 685, 281 (2008)

    Article  ADS  Google Scholar 

  • Crutcher, R.M., Hakobian, N., Troland, T.H.: Mon. Not. R. Astron. Soc. 402, L64 (2010)

    Article  ADS  Google Scholar 

  • D’Yakonov, M.I., Perel’, V.I.: Sov. J. Exp. Theor. Phys. 21, 227 (1965)

    Google Scholar 

  • Esquivel, A., Lazarian, A.: Astrophys. J. 631, 320 (2005)

    Article  ADS  Google Scholar 

  • Esquivel, A., Lazarian, A.: Astrophys. J. 740, 117 (2011)

    Article  ADS  Google Scholar 

  • Fano, U.: Rev. Mod. Phys. 29, 74 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Field, G.: Proc. IRE 46, 240 (1958)

    Article  ADS  Google Scholar 

  • Furlanetto, S.R., Oh, S.P., Briggs, F.H.: Phys. Rep. 433, 181 (2006)

    Article  ADS  Google Scholar 

  • Grandi, S.A.: Astrophys. J. 199, L43 (1975a)

    Article  ADS  Google Scholar 

  • Grandi, S.A.: Astrophys. J. 196, 465 (1975b)

    Article  ADS  Google Scholar 

  • Happer, W.: Rev. Mod. Phys. 44, 169 (1972)

    Article  ADS  Google Scholar 

  • Harris, W.M., Nordsieck, K.H., Scherb, F., Mierkiewicz, E.J.: AAS/division for planetary sciences meeting abstracts. Bull. Am. Astron. Soc. 29, 1034 (1997)

    ADS  Google Scholar 

  • Hawkins, W.B.: Phys. Rev. 98, 478 (1955)

    Article  ADS  Google Scholar 

  • Hawkins, W.B., Dicke, R.H.: Phys. Rev. 91, 1008 (1953)

    Article  ADS  Google Scholar 

  • Hernández-Monteagudo, C., Rubiño-Martín, J.A., Sunyaev, R.A.: Mon. Not. R. Astron. Soc. 380, 1656 (2007)

    Article  ADS  Google Scholar 

  • Hildebrand, R.H.: In: Lis, D.C., Vaillancourt, J.E., Goldsmith, P.F., Bell, T.A., Scoville, N.Z., Zmuidzinas, J. (eds.) Submillimeter Astrophysics and Technology: A Symposium Honoring Thomas G. Phillips. Astronomical Society of the Pacific Conference Series, vol. 417, p. 257 (2009)

    Google Scholar 

  • House, L.L.: Publ. Astron. Soc. Aust. 86, 490 (1974)

    Article  ADS  Google Scholar 

  • Kastler, A.: J. Phys. Radium 11, 255 (1950)

    Article  Google Scholar 

  • Kastler, A.: J. Opt. Soc. Am. (1917–1983), 47, 460 (1957)

    Article  ADS  Google Scholar 

  • Kastler, A.: Nucl. Instrum. Methods 110, 259 (1973)

    Article  ADS  Google Scholar 

  • Kuhn, J.R., Berdyugina, S.V., Fluri, D.M., Harrington, D.M., Stenflo, J.O.: Astrophys. J. 668, L63 (2007)

    Article  ADS  Google Scholar 

  • Landi Degl’Innocenti, E.: Solar Phys. 85, 3 (1983)

    Article  ADS  Google Scholar 

  • Landi Degl’Innocenti, E.: Solar Phys. 91, 1 (1984)

    ADS  Google Scholar 

  • Landi Degl’Innocenti, E.: Nature 392, 256 (1998)

    Article  ADS  Google Scholar 

  • Landi Degl’Innocenti, E., Landolfi, M. (eds.) Polarization in Spectral Lines. Astrophysics and Space Science Library, vol. 307. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  • Landolfi, M., Landi Degl’Innocenti, E.: Astron. Astrophys. 167, 200 (1986)

    ADS  Google Scholar 

  • Lazarian, A.: J. Quant. Spectrosc. Radiative Transf. 106, 225 (2007)

    Article  ADS  Google Scholar 

  • Lazarian, A., Pogosyan, D.: Astrophys. J. 747, 5 (2012)

    Article  ADS  Google Scholar 

  • Lazarian, A., Pogosyan, D., Esquivel, A.: In: Taylor, A.R., Landecker, T.L., Willis, A.G. (eds.) Seeing Through the Dust: The Detection of HI and the Exploration of the ISM in Galaxies. Astronomical Society of the Pacific Conference Series, vol. 276, p. 182 (2002)

    Google Scholar 

  • Lequeux, J.: The Interstellar Medium. Springer, Berlin (2005)

    Google Scholar 

  • Nordsieck, K.: Astronomical Polarimetry 2008. In: Bastien, P., Manset, N., Clemens, D. P., St-Louis, N (eds). ASP Conference Series, vol. 449, p. 139. San Francisco: Astronomical Society of the Pacific (2012)

    Google Scholar 

  • Roberge, A., Feldman, P. D., Lecavelier des Etangs, A., Vidal-Madjar, A., Deleuil, M., Bouret, J.-C., Ferlet, R., Moos, H. W.: Astrophys. J. 568, 343 (2002)

    Google Scholar 

  • Shangguan, J., Yan, H.: Astrophys. Space Sci. 343,335 (2012)

    Google Scholar 

  • Sharpee, B., Baldwin, J.A., Williams, R.: Astrophys. J. 615, 323 (2004)

    Article  ADS  Google Scholar 

  • Stenflo, J.O., Keller, C.U.: Astron. Astrophys. 321, 927 (1997)

    ADS  Google Scholar 

  • Sterling, N.C., Dinerstein, H.L., Bowers, C.W., Redfield, S.: Astrophys. J. 625, 368 (2005)

    Article  ADS  Google Scholar 

  • Thomas, N.: Surv. Geophys. 13, 91 (1992)

    Article  ADS  Google Scholar 

  • Trujillo Bueno, J., Landi Degl’Innocenti, E.: Astrophys. J. 482, L183 (1997)

    Article  ADS  Google Scholar 

  • Trujillo Bueno, J., Landi Degl’Innocenti, E., Collados, M., Merenda, L., Manso Sainz, R.: Nature 415, 403 (2002)

    Article  ADS  Google Scholar 

  • Varshalovich, D.A.: Astrofizika 4, 519 (1968)

    ADS  Google Scholar 

  • Varshalovich, D.A.: Sov. Phys. Uspekhi 13, 429 (1971)

    Article  ADS  Google Scholar 

  • Varshalovich, D.A., Chorny, G.F.: Icarus 43, 385 (1980)

    Article  ADS  Google Scholar 

  • Wouthuysen, S.A.: Astron. J. 57, 31 (1952)

    Article  ADS  Google Scholar 

  • Yan, H.: Mon. Not. R. Astron. Soc. 397, 1093 (2009)

    Article  ADS  Google Scholar 

  • Yan, H., Lazarian, A.: Astrophys. J. 653, 1292 (2006)

    Article  ADS  Google Scholar 

  • Yan, H., Lazarian, A.: Astrophys. J. 657, 618 (2007)

    Article  ADS  Google Scholar 

  • Yan, H., Lazarian, A.: Astrophys. J. 677, 1401 (2008)

    Article  ADS  Google Scholar 

  • Yan, H., Lazarian, A.: In: Revista Mexicana de Astronomia y Astrofisica Conference Series, vol. 36, pp. 97–105 (2009)

    ADS  Google Scholar 

  • Yan, H., Lazarian, A.: J. Quant. Spectrosc. Radiative Transf. 113, 1409 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

HY acknowledges the support from 985 grant from Peking University and the “Beyond the Horizons” grant from Templeton foundation as well as the visiting professorship at the International Institute of Physics (Brazil). AL’s research is supported by the NSF AST 1109295 and the NSF Center for Magnetic Self-Organization (CMSO). He also acknowledges the Humboldt Award and related productive stay at the Universities of Bochum and Cologne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huirong Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yan, H., Lazarian, A. (2015). Magnetic Field Measurement with Ground State Alignment. In: Lazarian, A., de Gouveia Dal Pino, E., Melioli, C. (eds) Magnetic Fields in Diffuse Media. Astrophysics and Space Science Library, vol 407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44625-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44625-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44624-9

  • Online ISBN: 978-3-662-44625-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics