Skip to main content

Simulations of Galactic Dynamos

  • Chapter
  • First Online:
Magnetic Fields in Diffuse Media

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 407))

Abstract

We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arshakian, T.G., Beck, R.: Optimum frequency band for radio polarization observations. Monthly Notices Roy. Astron. Soc. 418, 2336–2342 (2011)

    ADS  Google Scholar 

  • Banerjee, R., Jedamzik, K.: Evolution of cosmic magnetic fields: from the very early Universe, to recombination, to the present. Phys. Rev. D 70, 123003 (2004)

    ADS  Google Scholar 

  • Beck, R.: Magnetism in the spiral galaxy NGC 6946: magnetic arms, depolarization rings, dynamo modes, and helical fields. Astron. Astrophys. 470, 539–556 (2007)

    ADS  Google Scholar 

  • Beck, R., Brandenburg, A., Moss, D., Shukurov, A., Sokoloff, D.: Galactic magnetism: recent developments and perspectives. Ann. Rev. Astron. Astrophys. 34, 155–206 (1996)

    ADS  Google Scholar 

  • Beck, R., Wielebinski, R.: Magnetic fields in galaxies, In: Oswalt, T.D., Gilmore, G. (eds.) Planets, Stars and Stellar Systems, vol. 5, pp. 641–723. Springer Science+Business Media, Dordrecht (2013)

    Google Scholar 

  • Bhat, P., Blackman, E.G., Subramanian, K.: Resilience of helical fields to turbulent diffusion II: direct numerical simulations. Monthly Notices Roy. Astron. Soc. 438, 2954–2966 (2014)

    ADS  Google Scholar 

  • Biskamp, D., Müller, W.-C.: Decay laws for three-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 83, 2195–2198 (1999)

    ADS  Google Scholar 

  • Blackman, E.G., Brandenburg, A.: Dynamic nonlinearity in large scale dynamos with shear. Astrophys. J. 579, 359–373 (2002)

    ADS  Google Scholar 

  • Blackman, E.G., Field, G.B.: Constraints on the magnitude of α in dynamo theory. Astrophys. J. 534, 984–988 (2000)

    ADS  Google Scholar 

  • Blackman, E.G., Subramanian, K.: On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications. Monthly Notices Roy. Astron. Soc. 429, 1398–1406 (2013)

    ADS  Google Scholar 

  • Brandenburg, A.: Disc turbulence and viscosity. In: Abramowicz, M.A., Björnsson, G., Pringle, J.E. (eds.) Theory of Black Hole Accretion Discs, pp. 61–86. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Brandenburg, A.: Chandrasekhar-Kendall functions in astrophysical dynamos. Pramana J. Phys. 77, 67–76 (2011)

    ADS  Google Scholar 

  • Brandenburg, A., Dobler, W., Subramanian, K.: Magnetic helicity in stellar dynamos: new numerical experiments. Astron. Nachr. 323, 99–122 (2002)

    ADS  MATH  Google Scholar 

  • Brandenburg, A., Enqvist, K., Olesen, P.: Large-scale magnetic fields from hydromagnetic turbulence in the very early universe. Phys. Rev. D 54, 1291–1300 (1996)

    ADS  Google Scholar 

  • Brandenburg, A., Käpylä, P.J., Mohammed, A.: Non-Fickian diffusion and tau-approximation from numerical turbulence. Phys. Fluids 16, 1020–1027 (2004)

    ADS  Google Scholar 

  • Brandenburg, A., Nordlund, A.A.: Astrophysical turbulence modeling. Rep. Prog. Phys. 74, 046901 (2011)

    ADS  Google Scholar 

  • Brandenburg, A., Rädler, K.-H., Rheinhardt, M., Subramanian, K.: Magnetic quenching of alpha and diffusivity tensors in helical turbulence. Astrophys. J. Lett. 687, L49–L52 (2008a)

    ADS  Google Scholar 

  • Brandenburg, A., Rädler, K.-H., Schrinner, M.: Scale dependence of alpha effect and turbulent diffusivity. Astron. Astrophys. 482, 739–746 (2008b)

    ADS  MATH  Google Scholar 

  • Brandenburg, A., Sandin, C.: Catastrophic alpha quenching alleviated by helicity flux and shear. Astron. Astrophys. 427, 13–21 (2004)

    ADS  Google Scholar 

  • Brandenburg, A., Stepanov, R.: Faraday signature of magnetic helicity from reduced depolarization. Astrophys. J. 786, 91 (2014)

    ADS  Google Scholar 

  • Brandenburg, A., Subramanian, K., Balogh, A., Goldstein, M.L.: Scale-dependence of magnetic helicity in the solar wind. Astrophys. J. 734, 9 (2011)

    ADS  Google Scholar 

  • Brandenburg, A., Tuominen, I., Rädler, K.-H.: On the generation of non-axisymmetric magnetic fields in mean-field dynamos. Geophys. Astrophys. Fluid Dyn. 49, 45–55 (1989)

    ADS  MATH  Google Scholar 

  • Brentjens, M.A., de Bruyn, A.G.: Faraday rotation measure synthesis. Astron. Astrophys. 441, 1217–1228 (2005)

    ADS  Google Scholar 

  • Burn, B.J.: On the depolarization of discrete radio sources by Faraday dispersion. Monthly Notices Roy. Astron. Soc. 133, 67–83 (1966)

    ADS  Google Scholar 

  • Candelaresi, S., Brandenburg, A.: How much helicity is needed to drive large-scale dynamos? Phys. Rev. E 87, 043104 (2013)

    ADS  Google Scholar 

  • Cattaneo, F., Vainshtein, S.I.: Suppression of turbulent transport by a weak magnetic field. Astrophys. J. Lett. 376, L21–L24 (1991)

    ADS  Google Scholar 

  • Chamandy, L., Subramanian, K., Shukurov, A.: Galactic spiral patterns and dynamo action— I. A new twist on magnetic arms. Monthly Notices Roy. Astron. Soc. 428, 3569–3589 (2013)

    ADS  Google Scholar 

  • Chamandy, L., Subramanian, K., Quillen, A.: Magnetic arms generated by multiple interfering galactic spiral patterns. Monthly Notices Roy. Astron. Soc. 437, 562–574 (2014)

    ADS  Google Scholar 

  • Christensson, M., Hindmarsh, M., Brandenburg, A.: Inverse cascade in decaying 3D magnetohydrodynamic turbulence. Phys. Rev. E 64, 056405-6 (2001)

    ADS  Google Scholar 

  • Del Sordo, F., Brandenburg, A.: Vorticity production through rotation, shear, and baroclinicity. Astron. Astrophys. 528, A145 (2011)

    Google Scholar 

  • Del Sordo, F., Guerrero, G., Brandenburg, A.: Turbulent dynamo with advective magnetic helicity flux. Monthly Notices Roy. Astron. Soc. 429, 1686–1694 (2013)

    ADS  Google Scholar 

  • Donner, K.J., Brandenburg, A.: Generation and interpretation of galactic magnetic fields. Astron. Astrophys. 240, 289–298 (1990)

    ADS  MATH  Google Scholar 

  • Durrer, R., Neronov, A.: Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013)

    ADS  Google Scholar 

  • Ferrière, K.: Effect of an ensemble of explosions on the galactic dynamo. I. General formulation. Astrophys. J. 389, 286–296 (1992)

    ADS  Google Scholar 

  • Ferrière, K.: The full alpha-tensor due to supernova explosions and superbubbles in the galactic disk. Astrophys. J. 404, 162–184 (1993)

    ADS  Google Scholar 

  • Frick, P., Sokoloff, D., Stepanov, R., Beck, R.: Faraday rotation measure synthesis for magnetic fields of galaxies. Monthly Notices Roy. Astron. Soc. 414, 2540–2549 (2011)

    ADS  Google Scholar 

  • Gent, F.A., Shukurov, A., Fletcher, A., Sarson, G.R., Mantere, M.J.: The supernova-regulated ISM—I. The multiphase structure. Monthly Notices Roy. Astron. Soc. 432, 1396–1423 (2013a)

    ADS  Google Scholar 

  • Gent, F.A., Shukurov, A., Sarson, G.R., Fletcher, A., Mantere, M.J.: The supernova-regulated ISM—II. The mean magnetic field. Monthly Notices Roy. Astron. Soc. 430, L40–L44 (2013b)

    ADS  Google Scholar 

  • Gießübel, R., Heald, G., Beck, R., Arshakian, T.G.: Polarized synchrotron radiation from the Andromeda galaxy M 31 and background sources at 350 MHz. Astron. Astrophys. 559, A27 (2013)

    ADS  Google Scholar 

  • Gissinger, C., Fromang, S., Dormy, E.: Direct numerical simulations of the galactic dynamo in the kinematic growing phase. Monthly Notices Roy. Astron. Soc. 394, L84–L88 (2009)

    ADS  Google Scholar 

  • Gressel, O., Elstner, D., Ziegler, U., Rüdiger, G.: Direct simulations of a supernova-driven galactic dynamo. Astron. Astrophys. 486, L35–L38 (2008a)

    ADS  Google Scholar 

  • Gressel, O., Ziegler, U., Elstner, D., Rüdiger, G.: Dynamo coefficients from local simulations of the turbulent ISM. Astron. Nachr. 329, 619–624 (2008b)

    ADS  MATH  Google Scholar 

  • Gressel, O., Elstner, D., Ziegler, U.: Towards a hybrid dynamo model for the Milky Way. Astron. Astrophys. 560, A93 (2013)

    ADS  Google Scholar 

  • Gruzinov, A.V., Diamond, P.H.: Self-consistent theory of mean-field electrodynamics. Phys. Rev. Lett. 72, 1651–1653 (1994)

    ADS  Google Scholar 

  • Hanasz, M., Kowal, G., Otmianowska-Mazur, K., Lesch, H.: Amplification of galactic magnetic fields by the cosmic-ray-driven dynamo. Astrophys. J. 605, L33–L36 (2004)

    ADS  Google Scholar 

  • Hanasz, M., Otmianowska-Mazur, K., Kowal, G., Lesch, H.: Cosmic-ray-driven dynamo in galactic disks. A parameter study. Astron. Astrophys. 498, 335–346 (2009)

    ADS  Google Scholar 

  • Heald, G., Braun, R., Edmonds, R.: The Westerbork SINGS survey. II Polarization, Faraday rotation, and magnetic fields. Astron. Astrophys. 503, 409–435 (2009)

    Google Scholar 

  • Hubbard, A., Brandenburg, A.: Memory effects in turbulent transport. Astrophys. J. 706, 712–726 (2009)

    ADS  Google Scholar 

  • Hubbard, A., Brandenburg, A.: Magnetic helicity fluxes in an α 2 dynamo embedded in a halo. Geophys. Astrophys. Fluid Dyn. 104, 577–590 (2010)

    ADS  MathSciNet  Google Scholar 

  • Hubbard, A., Brandenburg, A.: Catastrophic quenching in α Ω dynamos revisited. Astrophys. J. 748, 51 (2012)

    ADS  Google Scholar 

  • Jansson, R., Farrar, G.R.: A new model of the Galactic magnetic field. Astrophys. J. 757, 14 (2012)

    ADS  Google Scholar 

  • Kahniashvili, T., Tevzadze, A.G., Brandenburg, A., Neronov, A.: Evolution of primordial magnetic fields from phase transitions. Phys. Rev. D 87, 083007 (2013)

    ADS  Google Scholar 

  • Kemel, K., Brandenburg, A., Ji, H.: A model of driven and decaying magnetic turbulence in a cylinder. Phys. Rev. E 84, 056407 (2011)

    ADS  Google Scholar 

  • Kleeorin, N.I., Ruzmaikin, A.A.: Dynamics of the average turbulent helicity in a magnetic field. Magnetohydrodynamics 18, 116–122 (1982). Translation from Magnitnaya Gidrodinamika 2, 17–24 (1982)

    Google Scholar 

  • Knobloch, E.: Turbulent diffusion of magnetic fields. Astrophys. J. 225, 1050–1057 (1978)

    ADS  Google Scholar 

  • Korpi, M.J., Brandenburg, A., Shukurov, A., Tuominen, I., Nordlund, A.A.: A supernova regulated interstellar medium: simulations of the turbulent multiphase medium. Astrophys. J. Lett. 514, L99–L102 (1999)

    ADS  Google Scholar 

  • Korpi, M.J., Brandenburg, A., Tuominen, I.: Driving interstellar turbulence by supernova explosions. Studia Geophys. et Geod. 42, 410–418 (1998)

    Google Scholar 

  • Krause, M., Beck, R., Hummel, E.: The magnetic field structures in two nearby spiral galaxies. II. The bisymmetric spiral field in M81. Astron. Astrophys. 217, 17–30 (1989)

    Google Scholar 

  • Krause, F., Rädler, K.-H.: Mean-field Magnetohydrodynamics and Dynamo Theory. Pergamon Press, Oxford (1980)

    MATH  Google Scholar 

  • Kulpa-DybeÅ‚, K., Otmianowska-Mazur, K., Kulesza-Å»ydzik, B., Hanasz, M., Kowal, G., WóltaÅ„ski, D., Kowalik, K.: Global simulations of the magnetic field evolution in barred galaxies under the influence of the cosmic-ray-driven dynamo. Astrophys. J. Lett. 733, L18 (2011)

    ADS  Google Scholar 

  • Layzer, D., Rosner, R., Doyle, H.T.: On the origin of solar magnetic fields. Astrophys. J. 229, 1126–1137 (1979)

    ADS  Google Scholar 

  • Mestel, L., Subramanian, K.: Galactic dynamos and density wave theory. Monthly Notices Roy. Astron. Soc. 248, 677–687 (1991)

    ADS  MATH  MathSciNet  Google Scholar 

  • Mitra, D., Candelaresi, S., Chatterjee, P., Tavakol, R., Brandenburg, A.: Equatorial magnetic helicity flux in simulations with different gauges. Astron. Nachr. 331, 130–135 (2010)

    ADS  MATH  Google Scholar 

  • Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  • Moss, D.: Modelling magnetic fields in spiral galaxies. Astron. Geophys. 53, 23–28 (2012)

    ADS  Google Scholar 

  • Moss, D., Brandenburg, A., Tuominen, I.: Properties of mean field dynamos with nonaxisymmetric α-effect. Astron. Astrophys. 247, 576–579 (1991)

    ADS  MATH  Google Scholar 

  • Moss, D., Brandenburg, A., Donner, K.J., Thomasson, M.: Models for the magnetic field of M81. Astrophys. J. 409, 179–189 (1993)

    ADS  Google Scholar 

  • Moss, D., Beck, R., Sokoloff, D., Stepanov, R., Krause, M., Arshakian, T.G.: The relation between magnetic and material arms in models for spiral galaxies. Astron. Astrophys. 556, A147 (2013)

    ADS  Google Scholar 

  • Neronov, A., Vovk, I.: Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73–192 (2010)

    ADS  Google Scholar 

  • Parker, E.N.: Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955)

    ADS  MathSciNet  Google Scholar 

  • Parker, E.N.: The generation of magnetic fields in astrophysical bodies. II. The galactic field. Astrophys. J. 163, 255–278 (1971)

    ADS  Google Scholar 

  • Parker, E.N.: Fast dynamos, cosmic rays, and the galactic magnetic field. Astrophys. J. 401, 137–145 (1992)

    ADS  Google Scholar 

  • Piddington, J.H.: Turbulent diffusion of magnetic fields in astrophysical plasmas. Astrophys. J. 247, 293–299 (1981)

    ADS  Google Scholar 

  • Pouquet, A., Frisch, U., Léorat, J.: Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976)

    ADS  MATH  Google Scholar 

  • Rädler, K.-H.: Mean field approach to spherical dynamo models. Astron. Astrophys. 301, 101–129 (1980)

    Google Scholar 

  • Rädler, K.-H.: Investigations of spherical kinematic mean-field dynamo models. Astron. Nachr. 307, 89–113 (1986a)

    ADS  MATH  Google Scholar 

  • Rädler, K.-H.: On the effect of differential rotation on axisymmetric and non-axisymmetric magnetic fields of cosmical bodies. Plasma Phys. ESA SP-251, 569–574 (1986b)

    Google Scholar 

  • Rees, M.J.: The origin and cosmogonic implications of seed magnetic fields. Quart. J. Roy. Astron. Soc. 28, 197–206 (1987)

    ADS  Google Scholar 

  • Rheinhardt, M., Brandenburg, A.: Test-field method for mean-field coefficients with MHD background. Astron. Astrophys. 520, A28 (2010)

    ADS  Google Scholar 

  • Rheinhardt, M., Brandenburg, A.: Modeling spatio-temporal nonlocality in mean-field dynamos. Astron. Nachr. 333, 71–77 (2012)

    ADS  Google Scholar 

  • Ruzmaikin, A.A., Sokolov, D.D., Shukurov, A.M.: Magnetic field distribution in spiral galaxies. Astron. Astrophys. 148, 335–343 (1985)

    ADS  Google Scholar 

  • Ruzmaikin, A.A., Sokoloff, D.D., Shukurov, A.M.: Magnetic Fields of Galaxies. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  • Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., Christensen, U.: Mean-field view on rotating magnetoconvection and a geodynamo model. Astron. Nachr. 326, 245–249 (2005)

    ADS  Google Scholar 

  • Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., Christensen, U.R.: Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo. Geophys. Astrophys. Fluid Dyn. 101, 81–116 (2007)

    ADS  MathSciNet  Google Scholar 

  • Shukurov, A.: Mesoscale magnetic structures in spiral galaxies. In: Wielebinski, R., Beck, R. (eds.) Cosmic Magnetic Fields. Lect. Notes Phys., vol. 664, pp. 113–135. Springer, Berlin (2005)

    Google Scholar 

  • Shukurov, A., Sokoloff, D., Subramanian, K., Brandenburg, A.: Galactic dynamo and helicity losses through fountain flow. Astron. Astrophys. 448, L33–L36 (2006)

    ADS  Google Scholar 

  • Snodin, A.P., Brandenburg, A., Mee, A.J., Shukurov, A.: Simulating field-aligned diffusion of a cosmic ray gas. Monthly Notices Roy. Astron. Soc. 373, 643–652 (2006)

    ADS  Google Scholar 

  • Sofue, Y., Fujimoto, M., Wielebinski, R.: Global structure of magnetic fields in spiral galaxies. Ann. Rev. Astron. Astrophys. 24, 459–497 (1986)

    ADS  Google Scholar 

  • Sokoloff, D.D., Bykov, A.A., Shukurov, A., Berkhuijsen, E.M., Beck, R., Poezd, A.D.: Depolarization and Faraday effects in galaxies. Monthly Notices Roy. Astron. Soc. 299, 189–206 (1998)

    ADS  Google Scholar 

  • Steenbeck, M., Krause, F.: Zur Dynamotheorie stellarer und planetarer Magnetfelder I. Berechnung sonnenähnlicher Wechselfeldgeneratoren. Astron. Nachr. 291, 49–84 (1969a)

    MATH  Google Scholar 

  • Steenbeck, M., Krause, F.: Zur Dynamotheorie stellarer und planetarer Magnetfelder II. Berechnung planetenähnlicher Gleichfeldgeneratoren. Astron. Nachr. 291, 271–286 (1969b)

    MATH  Google Scholar 

  • Steenbeck, M., Krause, F., Rädler, K.-H.: Berechnung der mittleren Lorentz-Feldstärke \(\overline{\boldsymbol{v} \times \boldsymbol{ B}}\) für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung. Z. Naturforsch. 21a, 369–376 (1966). See also the translation in Roberts & Stix, The turbulent dynamo, Tech. Note 60, NCAR, Boulder, Colorado (1971)

    Google Scholar 

  • Subramanian, K., Brandenburg, A.: Nonlinear current helicity fluxes in turbulent dynamos and alpha quenching. Phys. Rev. Lett. 93, 205001 (2004)

    ADS  Google Scholar 

  • Subramanian, K., Brandenburg, A.: Magnetic helicity density and its flux in weakly inhomogeneous turbulence. Astrophys. J. 648, L71–L74 (2006)

    ADS  Google Scholar 

  • Subramanian, K., Mestel, L.: Galactic dynamos and density wave theory—II. An alternative treatment for strong non-axisymmetry. Monthly Notices Roy. Astron. Soc. 265, 649–654 (1993)

    Google Scholar 

  • Sur, S., Shukurov, A., Subramanian, K.: Galactic dynamos supported by magnetic helicity fluxes. Monthly Notices Roy. Astron. Soc. 377, 874–882 (2007)

    ADS  Google Scholar 

  • Tevzadze, A.G., Kisslinger, L., Brandenburg, A., Kahniashvili, T.: Magnetic fields from QCD phase transitions. Astrophys. J. 759, 54 (2012)

    ADS  Google Scholar 

  • Thomasson, M., Donner, K.J.: A model of the tidal interaction between M81 and NGC3077. Astron. Astrophys. 272, 153–160 (1993)

    ADS  Google Scholar 

  • Turner, M.S., Widrow, L.M.: Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743–2754 (1988)

    ADS  Google Scholar 

  • Vachaspati, T.: Magnetic fields from cosmological phase transitions. Phys. Lett. B 265, 258–261 (1991)

    ADS  Google Scholar 

  • Vachaspati, T.: Estimate of the primordial magnetic field helicity. Phys. Rev. Lett. 87, 251302 (2001)

    ADS  Google Scholar 

  • Vainshtein, S.I., Cattaneo, F.: Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165–171 (1992)

    ADS  Google Scholar 

  • Vainshtein, S.I., Ruzmaikin, A.A.: Generation of the large-scale Galactic magnetic field. Sov. Astron. 16, 365–367 (1971)

    ADS  Google Scholar 

  • Vishniac, E.T., Cho, J., Magnetic helicity conservation and astrophysical dynamos. Astrophys. J. 550, 752–760 (2001)

    ADS  Google Scholar 

  • Warnecke, J., Brandenburg, A., Mitra, D.: Magnetic twist: a source and property of space weather. J. Spa. Weather Spa. Clim. 2, A11 (2012)

    ADS  Google Scholar 

  • Yousef, T.A., Brandenburg, A.: Relaxation of writhe and twist of a bi-helical magnetic field. Astron. Astrophys. 407, 7–12 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

I am indebted to Oliver Gressel and Kandaswamy Subramanian for reading the manuscript and providing help and useful comments. Financial support from the European Research Council under the AstroDyn Research Project 227952, the Swedish Research Council under the grants 621-2011-5076 and 2012-5797, as well as the Research Council of Norway under the FRINATEK grant 231444 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Brandenburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brandenburg, A. (2015). Simulations of Galactic Dynamos. In: Lazarian, A., de Gouveia Dal Pino, E., Melioli, C. (eds) Magnetic Fields in Diffuse Media. Astrophysics and Space Science Library, vol 407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44625-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44625-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44624-9

  • Online ISBN: 978-3-662-44625-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics