Skip to main content

Magnetic Properties of Gated Graphene Nanostructures

  • Chapter
  • First Online:
Graphene Quantum Dots

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter we describe magnetic properties of graphene quantum dots and rings with broken sublattice symmetry using the TB+HF+CI methodology. The broken sublattice symmetry leads to the existence of a shell of degenerate levels at the Fermi level. We discuss how the electronic and magnetic properties of GQDs depend on the filling of the shell in triangular graphene quantum dots (TGQD), how they can be controlled by electric field in bi-layer TGQDs and how they can be detected in Coulomb and Spin Blockade transport experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  2. A.D. Güçlü, P. Potasz, O. Voznyy, M. Korkusinski, P. Hawrylak, Phys. Rev. Lett. 103, 246805 (2009)

    Article  ADS  Google Scholar 

  3. P. Potasz, A.D. Güçlü, A. Wójs, P. Hawrylak, Phys. Rev. B 85, 075431 (2012)

    Article  ADS  Google Scholar 

  4. B. Wunsch, T. Stauber, F. Guinea, Phys. Rev. B 77, 035316 (2008)

    Article  ADS  Google Scholar 

  5. I. Romanovsky, Y. Yannouleas, U. Landman, Phys. Rev. B 79, 075311 (2009)

    Article  ADS  Google Scholar 

  6. P. Hawrylak, A. Wójs, J.A. Brum, Phys. Rev. B 55, 11397 (1996)

    Article  ADS  Google Scholar 

  7. M. Ezawa, Phys. Rev. B 76, 245415 (2007)

    Article  ADS  Google Scholar 

  8. J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. Lett. 99, 177204 (2007)

    Article  ADS  Google Scholar 

  9. W.L. Wang, S. Meng, E. Kaxiras, Nano Lett. 8, 241 (2008)

    Article  ADS  Google Scholar 

  10. S.L. Sondhi, A. Karlhede, S.A. Kivelson, E.H. Rezayi, Phys. Rev. B 47, 16419 (1993)

    Article  ADS  Google Scholar 

  11. A.H. MacDonald, H.A. Fertig, L. Brey, Phys. Rev. Lett. 76, 2153 (1996)

    Article  ADS  Google Scholar 

  12. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 96, 256602 (1996)

    Article  ADS  Google Scholar 

  13. P. Plochocka, J.M. Schneider, D.K. Maude, M. Potemski, M. Rappaport, V. Umansky, I. Bar-Joseph, J.G. Groshaus, Y. Gallais, A. Pinczuk, Phys. Rev. Lett. 102, 126806 (2009)

    Google Scholar 

  14. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, Z. Wasilewski, Phys. Rev. B 61, R16315 (2000)

    Google Scholar 

  15. A.D. Güçlü, Q.F. Sun, H. Guo, R. Harris, Phys. Rev. B 66, 195327 (2002)

    Article  ADS  Google Scholar 

  16. O. Voznyy, A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 83, 165417 (2011)

    Article  ADS  Google Scholar 

  17. T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri, Phys. Rev. Lett. 101, 096402 (2008)

    Article  ADS  Google Scholar 

  18. P. Koskinen, S. Malola, H. Häkkinen, Phys. Rev. B 80, 073401 (2009)

    Article  ADS  Google Scholar 

  19. Ç.Ö. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Science 323, 1705 (2009)

    Article  ADS  Google Scholar 

  20. A. Chuvilin, J.C. Meyer, G. Algara-Siller, U. Kaiser, New J. Phys. 11, 083019 (2009)

    Article  ADS  Google Scholar 

  21. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 84, 035425 (2011)

    Article  ADS  Google Scholar 

  24. M. Ezawa, Phys. Rev. B 81, 201402 (2010)

    Article  ADS  Google Scholar 

  25. P. Potasz, A.D. Güçlü, P. Hawrylak, Phys. Rev. B 81, 033403 (2010)

    Article  ADS  Google Scholar 

  26. A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 82, 155445 (2010)

    Article  ADS  Google Scholar 

  27. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Phys. Rev. Lett. 102, 256405 (2009)

    Article  ADS  Google Scholar 

  28. P. Potasz, A.D. Güçlü, O. Voznyy, J.A. Folk, P. Hawrylak, Phys. Rev. B 83, 174441 (2011)

    Article  ADS  Google Scholar 

  29. P. Potasz, A.D. Güçlü, P. Hawrylak, Phys. Rev. B 82, 075425 (2010)

    Article  ADS  Google Scholar 

  30. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  31. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  32. S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 82, 245412 (2010)

    Google Scholar 

  33. A.D. Guclu, M. Grabowski, P. Hawrylak, Phys. Rev. B 87, 035435 (2013)

    Article  ADS  Google Scholar 

  34. R. Herges, Chem. Rev. 106, 4820 (2006)

    Article  Google Scholar 

  35. D. Ajami, O. Oeckler, A. Simon, R. Herges, Nature 426, 819 (2003)

    Article  ADS  Google Scholar 

  36. K. Wakabayashi, K. Harigaya, J. Phys. Soc. Jpn. 72, 998 (2003)

    Article  ADS  Google Scholar 

  37. K. Harigaya, A. Yamashiro, Y. Shimoi, K. Wakabayashi, Synth. Met. 152, 261 (2005)

    Article  Google Scholar 

  38. D. Jiang, S. Dai, J. Phys. Chem. C 112, 5348 (2008)

    Article  Google Scholar 

  39. E.W.S. Caetano, V.N. Freire, S.G. dos Santos, D.S. Galvao, F. Sato, J. Chem. Phys. 128, 164719 (2008)

    Article  ADS  Google Scholar 

  40. Z.L. Guo, Z.R. Gong, H. Dong, C.P. Sun, Phys. Rev. B 80, 195310 (2009)

    Article  ADS  Google Scholar 

  41. X. Wang, X. Zheng, M. Ni, L. Zou, Z. Zeng, Appl. Phys. Lett. 97, 123103 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alev Devrim Güçlü .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Güçlü, A.D., Potasz, P., Korkusinski, M., Hawrylak, P. (2014). Magnetic Properties of Gated Graphene Nanostructures. In: Graphene Quantum Dots. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44611-9_6

Download citation

Publish with us

Policies and ethics