Skip to main content

Electron–Electron Interactions in Graphene Quantum Dots

  • Chapter
  • First Online:
  • 3086 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter introduces the problem of electron–electron interactions, briefly describes several methods and their application to graphene quantum dots. The Hubbard model, the mean-field Hartree-Fock method, the Density Functional Theory and the configuration interaction (CI) method are introduced and applied to graphene quantum dots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G.D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990)

    Book  Google Scholar 

  2. J.J. Quinn, K.-S. Yi, Solid State Physics: Principles and Modern Applications (Springer, Heidelberg, 2009)

    Google Scholar 

  3. G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  4. P. Hawrylak, Phys. Rev. Lett. 59, 485 (1987)

    Article  ADS  Google Scholar 

  5. P. Hawrylak, S. Das Sarma, Advances in studies of electrons in low dimensional structures. Solid State Commun. 127, 753 (2003)

    Article  ADS  Google Scholar 

  6. P. Hawrylak, M. Korkusinski, Electronic and optical properties of self-assembled quantum dots, in Single Quantum Dots: Fundamentals, Applications, and New Concepts, vol. 90, Topics in Applied Physics, ed. by P. Michler (Springer, Heidelberg, 2003), pp. 25–92

    Chapter  Google Scholar 

  7. C.-Y. Hsieh, Y.P. Shim, M. Korkusinski, P. Hawrylak, Physics of triple quantum dot molecule with controlled electron numbers. Rep. Prog. Phys. 75, 114501 (2012)

    Article  Google Scholar 

  8. G. Dresselhaus, M.S. Dresselhaus, Adv. Phys. 30(2), 139–326 (1981)

    Article  ADS  Google Scholar 

  9. K. Shung, Phys. Rev. B 34, 979993 (1986)

    Google Scholar 

  10. P. Hawrylak, Solid State Commun. 63, 241 (1987)

    Article  ADS  Google Scholar 

  11. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  12. S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  13. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 10671125 (2012)

    Article  Google Scholar 

  14. M.A.H. Vozmediano, F. Guinea, Phys. Scr. T146, 014015 (2012)

    Article  ADS  Google Scholar 

  15. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  16. A.H. MacDonald, J. Jung, F. Zhang, Phys. Scr. T146, 014012 (2012)

    Article  ADS  Google Scholar 

  17. A. Hideo, D. Mildred (eds.), Physics of Graphene (Springer, Heidelberg, 2014)

    Google Scholar 

  18. L.E.F. Foa Torres, S. Roche, J.C. Charlier, Introduction to Graphene Based Nanomaterials: From Electronic Structure to Quantum Transport (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  19. C. Wang, D. Wong, A.V. Shytov, V.W. Brar, S. Choi, Q. Wu, H.-Z. Tsai, W. Regan, A. Zettl, R.K. Kawakami, S.G. Louie, L.S. Levitov, M.F. Crommie, Science 340, 734 (2013)

    Article  ADS  Google Scholar 

  20. C. Toke, P.E. Lammert, V.H. Crespi, J.K. Jain, Phys. Rev. B 74, 235417 (2006)

    Article  ADS  Google Scholar 

  21. V.M. Apalkov, T. Chakraborty, Phys. Rev. Lett. 97, 126801 (2006)

    Article  ADS  Google Scholar 

  22. N. Shibata, K. Nomura, J. Phys. Soc. Jpn. 78, 104708 (2009)

    Article  ADS  Google Scholar 

  23. L. Yang, M.L. Cohen, S.G. Louie, Nano Lett. 7, 3112 (2007)

    Article  ADS  Google Scholar 

  24. T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri, Phys. Rev. Lett. 101, 096402 (2008)

    Article  ADS  Google Scholar 

  25. P. Koskinen, S. Malola, H. Häkkinen, Phys. Rev. Lett. 101, 115502 (2008)

    Article  ADS  Google Scholar 

  26. K.T. Chan, J.B. Neaton, M.L. Cohen, Phys. Rev. B 77, 235430 (2008)

    Article  ADS  Google Scholar 

  27. H. Sevincli, M. Topsakal, E. Durgun, S. Ciraci, Phys. Rev. B 77, 195434 (2008)

    Article  ADS  Google Scholar 

  28. I. Ozfidan, M. Korkusinski, A.D. Güçlü, J. McGuire P. Hawrylak, Phys. Rev. B 89, 085310 (2014)

    Google Scholar 

  29. S. Sorella, E. Tosatti, Europhys. Lett. 19, 699 (1992)

    Article  ADS  Google Scholar 

  30. T.O. Wehling, E. Sasioglu, C. Friedrich, A.I. Lichtenstein, M.I. Katsnelson, S. Blügel, Phys. Rev. Lett. 106, 236805 (2011)

    Article  ADS  Google Scholar 

  31. E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Physics (Adam Hilger, New York, 1991)

    Google Scholar 

  32. B.J. Ransil, Rev. Mod. Phys. 32, 245 (1960)

    Article  ADS  Google Scholar 

  33. A.D. Güçlü, P. Potasz, O. Voznyy, M. Korkusinski, P. Hawrylak, Phys. Rev. Lett. 103, 246805 (2009)

    Article  ADS  Google Scholar 

  34. P. Potasz, A.D. Güçlü, P. Hawrylak, Phys. Rev. B 82, 075425 (2010)

    Article  ADS  Google Scholar 

  35. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  MATH  ADS  Google Scholar 

  36. J. Hubbard, Proc. R. Soc. Lond. Ser. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  37. K.A. Chao, J. Spałek, A.M. Oleś, J. Phys. C: Solid State Phys. 10, L271 (1977)

    Article  ADS  Google Scholar 

  38. K.A. Chao, J. Spałek, A.M. Oleś, Phys. Rev. B 18, 3453 (1978)

    Article  ADS  Google Scholar 

  39. M. Ezawa, Phys. Rev. B 76, 245415 (2007)

    Article  ADS  Google Scholar 

  40. J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. Lett. 99, 177204 (2007)

    Article  ADS  Google Scholar 

  41. O.V. Yazyev, Phys. Rev. Lett. 101, 037203 (2008)

    Article  ADS  Google Scholar 

  42. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  43. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  44. O. Voznyy, A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 83, 165417 (2011)

    Article  ADS  Google Scholar 

  45. A. Wensauer, M. Korkusiński, P. Hawrylak, Solid State Commun. 130, 115 (2004)

    Article  ADS  Google Scholar 

  46. C. Lanczos, J. Natl. Bureau Standards 45, 255 (1950)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alev Devrim Güçlü .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Güçlü, A.D., Potasz, P., Korkusinski, M., Hawrylak, P. (2014). Electron–Electron Interactions in Graphene Quantum Dots. In: Graphene Quantum Dots. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44611-9_5

Download citation

Publish with us

Policies and ethics