Advertisement

Single-Particle Properties of Graphene Quantum Dots

  • Alev Devrim GüçlüEmail author
  • Pawel Potasz
  • Marek Korkusinski
  • Pawel Hawrylak
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter describes the size, shape and edge dependence of the electronic properties of graphene quantum dots obtained using the empirical tight-binding model. The effective mass extension of the TB model is discussed, including the effect of the magnetic field. The one-band TB model is extended to the \(sp^2\) TB model and spin-orbit coupling is introduced, followed by the Kane-Mele Hamiltonian and the spin Hall effect in nanoribbons. Triangular quantum dots and rings with zigzag edges as examples of quantum dots with broken sublattice symmetry and a shell of degenerate states at the Fermi level are described. Graphene ribbons and twisted graphene Möbius ribbons as examples of topological insulators where topology is introduced through geometry are discussed.

Keywords

Graphene Quantum Dots (GQDs) Triangular Quantum Dots (TGQD) Zigzag Edges Graphene Ribbons Armchair Edges 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.R. Wallace, Phys. Rev. 71, 622 (1947)zbMATHADSCrossRefGoogle Scholar
  2. 2.
    L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1998)CrossRefGoogle Scholar
  3. 3.
    P. Hawrylak, M. Korkusinski, Electronic and optical properties of self-assembled quantum dots, in Single Quantum Dots: Fundamentals, Applications, and New Concepts, vol. 90, Topics in Applied Physics, ed. by P. Michler (Springer, Berlin, 2003), pp. 25–92CrossRefGoogle Scholar
  4. 4.
    W. Sheng, M. Korkusinski, A.D. Guclu, M. Zielinski, P. Potasz, E.S. Kadantsev, O. Voznyy, P. Hawrylak, Frontiers Phys. 7, 328 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S. Raymond, S. Studenikin, A. Sachrajda, Z. Wasilewski, S.J. Cheng, W. Sheng, P. Hawrylak, A. Babinski, M. Potemski, G. Ortner, M. Bayer, Phys. Rev. Lett. 92, 187402 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    M.V. Berry, R.J. Mondragon, Proc. Royal Soc. Lond. A 412, 53–74 (1987)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. Schnez, K. Ensslin, M. Sigrist, T. Ihn, Phys. Rev. B 78, 195427 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    B. Wunsch, T. Stauber, F. Guinea, Phys. Rev. B 77, 035316 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    W. Husler, R. Egger, Phys. Rev. B 80, 161402(R) (2009)ADSCrossRefGoogle Scholar
  11. 11.
    H.P. Heiskanen, M. Manninen, J. Akola, New J. Phys. 10, 103015 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J. Akola, H.P. Heiskanen, M. Manninen, Phys. Rev. B 77, 193410 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M. Zarenia, A. Chaves, G.A. Farias, F.M. Peeters, Phys. Rev. B 84, 245403 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Rozhkov, F. Nori, Phys. Rev. B 81, 155401 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M. Wimmer, A.R. Akhmerov, F. Guinea, Phys. Rev. B 82, 045409 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    F.E. Borghis, C.H. Papas, in Encyclopedia of Physics, ed. by S. Flucke (Springer, Berlin, 1957)Google Scholar
  17. 17.
    H.R. Krishnamurthy, H.S. Mani, H.C. Verma, J. Phys. A: Math. Gen. 15, 2131 (1982)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    J.W. McClure, Phys. Rev. 108, 612 (1957)ADSCrossRefGoogle Scholar
  19. 19.
    Z.Z. Zhang, K. Chang, F.M. Peeters, Phys. Rev. B 77, 235411 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    D.A. Bahamon, A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 79, 125414 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    N.M.R. Peres, J.N.B. Rodrigues, T. Stauber, J.M.B. Lopes dos Santos, J. Phys.: Condens. Matter 21, 344202 (2009)Google Scholar
  22. 22.
    P. Recher, B. Trauzettel, Nanotechnology 21, 302001 (2010)CrossRefGoogle Scholar
  23. 23.
    F. Libisch, S. Rotter, J. Gttinger, C. Stampfer, J. Burgdrfer, Phys. Rev. B 81, 245411 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    M. Grujic, M. Zarenia, A. Chaves, M. Tadic, G.A. Farias, F.M. Peeters, Phys. Rev. B 84, 205441 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 88, 155429 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    S. Schnez, F. Molitor, C. Stampfer, J. Gttinger, I. Shorubalko, T. Ihn, K. Ensslin, Appl. Phys. Lett. 94, 012107 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Hasegawa, P. Lederer, T.M. Rice, P.B. Wiegmannt, Phys. Rev. Lett. 63, 907 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. 140, A401 (1965)ADSCrossRefGoogle Scholar
  30. 30.
    S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 82, 245412 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)CrossRefGoogle Scholar
  33. 33.
    Manuel J. Schmidt, Daniel Loss, Phys. Rev. B 81, 165439 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    D.J. Chadi, Phys. Rev. B 16, 790 (1977)ADSCrossRefGoogle Scholar
  35. 35.
    M. Zielinski, M. Korkusiski, P. Hawrylak, Phys. Rev. B 81, 085301 (2010)Google Scholar
  36. 36.
    A.D. Guclu, M. Grabowski, P. Hawrylak, Phys. Rev. B 87, 035435 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Y.S. Dedkov, M. Fonin, U. Rdiger, C. Laubschat, Phys. Rev. Lett. 100, 107602 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, J. Fabian, Phys. Rev. B 80, 235431 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    F. Kuemmeth, S. Ilani, D.C. Ralph, P.L. McEuen, Nature (London) 452, 448 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    P. Potasz, A.D. Güçlü, P. Hawrylak, Phys. Rev. B 81, 033403 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    E.W. Weisstein, Pascals Triangle. From MathWorldAWolfram Web Resource. http://mathworld.wolfram.com/PascalsTriangle.html
  45. 45.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group Theory: Application to the Physics of Condensed Matter (Springer, Berlin, 2008)Google Scholar
  46. 46.
    Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    O.V. Yazyev, R.B. Capaz, S.G. Louie, Phys. Rev. B 84, 115406 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    C. Tao, L. Jiao, O.V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R.B. Capaz, J.M. Tour, A. Zettl, S.G. Louie, H. Dai, M.F. Crommie, Nat. Phys. 7, 616 (2011)CrossRefGoogle Scholar
  49. 49.
    A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 84, 035425 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. Lett. 99, 177204 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    W.L. Wang, S. Meng, E. Kaxiras, Nano Lett. 8, 241 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    M. Ezawa, Phys. Rev. B 77, 155411 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    A.D. Güçlü, P. Potasz, O. Voznyy, M. Korkusinski, P. Hawrylak, Phys. Rev. Lett. 103, 246805 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 82, 155445 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    M. Ezawa, Phys. Rev. B 81, 201402 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    O. Voznyy, A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 83, 165417 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    P. Potasz, A.D. Güçlü, O. Voznyy, J.A. Folk, P. Hawrylak, Phys. Rev. B 83, 174441 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    P. Potasz, A.D. Güçlü, P. Hawrylak, Phys. Rev. B 82, 075425 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    R. Herges, Chem. Rev. 106, 4820 (2006)CrossRefGoogle Scholar
  61. 61.
    D. Ajami, O. Oeckler, A. Simon, R. Herges, Nature 426, 819 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    K. Wakabayashi, K. Harigaya, J. Phys. Soc. Jpn. 72, 998 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    K. Harigaya, A. Yamashiro, Y. Shimoi, K. Wakabayashi, Synth. Met. 152, 261 (2005)CrossRefGoogle Scholar
  64. 64.
    D. Jiang, S. Dai, J. Phys. Chem. C 112, 5348 (2008)CrossRefGoogle Scholar
  65. 65.
    E.W.S. Caetano, V.N. Freire, S.G. dos Santos, D.S. Galvao, F. Sato, J. Chem. Phys. 128, 164719 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    Z.L. Guo, Z.R. Gong, H. Dong, C.P. Sun, Phys. Rev. B 80, 195310 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    X. Wang, X. Zheng, M. Ni, L. Zou, Z. Zeng, Appl. Phys. Lett. 97, 123103 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    A. Yamashiro, Y. Shimoi, K. Harigaya, K. Wakabayashi, Phys. Rev. B 68, 193410 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    K. Harigaya, A. Yamashiro, Y. Shimoi, K. Wakabayashi, Synth. Met. 152, 317 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alev Devrim Güçlü
    • 1
    Email author
  • Pawel Potasz
    • 2
  • Marek Korkusinski
    • 3
  • Pawel Hawrylak
    • 4
  1. 1.Department of PhysicsIzmir Institute of TechnologyIzmirTurkey
  2. 2.Institute of PhysicsWrocław University of TechnologyWrocławPoland
  3. 3.Emerging Technologies Division, Quantum Theory GroupNational Research Council of CanadaOttawaCanada
  4. 4.Department of PhysicsUniversity of OttawaOttawaCanada

Personalised recommendations