Skip to main content

Single-Particle Properties of Graphene Quantum Dots

  • Chapter
  • First Online:
Graphene Quantum Dots

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter describes the size, shape and edge dependence of the electronic properties of graphene quantum dots obtained using the empirical tight-binding model. The effective mass extension of the TB model is discussed, including the effect of the magnetic field. The one-band TB model is extended to the \(sp^2\) TB model and spin-orbit coupling is introduced, followed by the Kane-Mele Hamiltonian and the spin Hall effect in nanoribbons. Triangular quantum dots and rings with zigzag edges as examples of quantum dots with broken sublattice symmetry and a shell of degenerate states at the Fermi level are described. Graphene ribbons and twisted graphene Möbius ribbons as examples of topological insulators where topology is introduced through geometry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  MATH  ADS  Google Scholar 

  2. L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1998)

    Book  Google Scholar 

  3. P. Hawrylak, M. Korkusinski, Electronic and optical properties of self-assembled quantum dots, in Single Quantum Dots: Fundamentals, Applications, and New Concepts, vol. 90, Topics in Applied Physics, ed. by P. Michler (Springer, Berlin, 2003), pp. 25–92

    Chapter  Google Scholar 

  4. W. Sheng, M. Korkusinski, A.D. Guclu, M. Zielinski, P. Potasz, E.S. Kadantsev, O. Voznyy, P. Hawrylak, Frontiers Phys. 7, 328 (2012)

    Article  ADS  Google Scholar 

  5. S. Raymond, S. Studenikin, A. Sachrajda, Z. Wasilewski, S.J. Cheng, W. Sheng, P. Hawrylak, A. Babinski, M. Potemski, G. Ortner, M. Bayer, Phys. Rev. Lett. 92, 187402 (2004)

    Article  ADS  Google Scholar 

  6. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  7. M.V. Berry, R.J. Mondragon, Proc. Royal Soc. Lond. A 412, 53–74 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Schnez, K. Ensslin, M. Sigrist, T. Ihn, Phys. Rev. B 78, 195427 (2008)

    Article  ADS  Google Scholar 

  9. B. Wunsch, T. Stauber, F. Guinea, Phys. Rev. B 77, 035316 (2008)

    Article  ADS  Google Scholar 

  10. W. Husler, R. Egger, Phys. Rev. B 80, 161402(R) (2009)

    Article  ADS  Google Scholar 

  11. H.P. Heiskanen, M. Manninen, J. Akola, New J. Phys. 10, 103015 (2008)

    Article  ADS  Google Scholar 

  12. J. Akola, H.P. Heiskanen, M. Manninen, Phys. Rev. B 77, 193410 (2008)

    Article  ADS  Google Scholar 

  13. M. Zarenia, A. Chaves, G.A. Farias, F.M. Peeters, Phys. Rev. B 84, 245403 (2011)

    Article  ADS  Google Scholar 

  14. A.V. Rozhkov, F. Nori, Phys. Rev. B 81, 155401 (2010)

    Article  ADS  Google Scholar 

  15. M. Wimmer, A.R. Akhmerov, F. Guinea, Phys. Rev. B 82, 045409 (2010)

    Article  ADS  Google Scholar 

  16. F.E. Borghis, C.H. Papas, in Encyclopedia of Physics, ed. by S. Flucke (Springer, Berlin, 1957)

    Google Scholar 

  17. H.R. Krishnamurthy, H.S. Mani, H.C. Verma, J. Phys. A: Math. Gen. 15, 2131 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  18. J.W. McClure, Phys. Rev. 108, 612 (1957)

    Article  ADS  Google Scholar 

  19. Z.Z. Zhang, K. Chang, F.M. Peeters, Phys. Rev. B 77, 235411 (2008)

    Article  ADS  Google Scholar 

  20. D.A. Bahamon, A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 79, 125414 (2009)

    Article  ADS  Google Scholar 

  21. N.M.R. Peres, J.N.B. Rodrigues, T. Stauber, J.M.B. Lopes dos Santos, J. Phys.: Condens. Matter 21, 344202 (2009)

    Google Scholar 

  22. P. Recher, B. Trauzettel, Nanotechnology 21, 302001 (2010)

    Article  Google Scholar 

  23. F. Libisch, S. Rotter, J. Gttinger, C. Stampfer, J. Burgdrfer, Phys. Rev. B 81, 245411 (2010)

    Article  ADS  Google Scholar 

  24. M. Grujic, M. Zarenia, A. Chaves, M. Tadic, G.A. Farias, F.M. Peeters, Phys. Rev. B 84, 205441 (2011)

    Article  ADS  Google Scholar 

  25. A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 88, 155429 (2013)

    Article  ADS  Google Scholar 

  26. S. Schnez, F. Molitor, C. Stampfer, J. Gttinger, I. Shorubalko, T. Ihn, K. Ensslin, Appl. Phys. Lett. 94, 012107 (2009)

    Article  ADS  Google Scholar 

  27. D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  28. Y. Hasegawa, P. Lederer, T.M. Rice, P.B. Wiegmannt, Phys. Rev. Lett. 63, 907 (1989)

    Article  ADS  Google Scholar 

  29. G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. 140, A401 (1965)

    Article  ADS  Google Scholar 

  30. S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 82, 245412 (2010)

    Article  ADS  Google Scholar 

  31. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  32. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  33. Manuel J. Schmidt, Daniel Loss, Phys. Rev. B 81, 165439 (2010)

    Article  ADS  Google Scholar 

  34. D.J. Chadi, Phys. Rev. B 16, 790 (1977)

    Article  ADS  Google Scholar 

  35. M. Zielinski, M. Korkusiski, P. Hawrylak, Phys. Rev. B 81, 085301 (2010)

    Google Scholar 

  36. A.D. Guclu, M. Grabowski, P. Hawrylak, Phys. Rev. B 87, 035435 (2013)

    Article  ADS  Google Scholar 

  37. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  38. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  39. Y.S. Dedkov, M. Fonin, U. Rdiger, C. Laubschat, Phys. Rev. Lett. 100, 107602 (2008)

    Article  ADS  Google Scholar 

  40. M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, J. Fabian, Phys. Rev. B 80, 235431 (2009)

    Article  ADS  Google Scholar 

  41. D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006)

    Article  ADS  Google Scholar 

  42. F. Kuemmeth, S. Ilani, D.C. Ralph, P.L. McEuen, Nature (London) 452, 448 (2008)

    Article  ADS  Google Scholar 

  43. P. Potasz, A.D. Güçlü, P. Hawrylak, Phys. Rev. B 81, 033403 (2010)

    Article  ADS  Google Scholar 

  44. E.W. Weisstein, Pascals Triangle. From MathWorldAWolfram Web Resource. http://mathworld.wolfram.com/PascalsTriangle.html

  45. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group Theory: Application to the Physics of Condensed Matter (Springer, Berlin, 2008)

    Google Scholar 

  46. Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  47. O.V. Yazyev, R.B. Capaz, S.G. Louie, Phys. Rev. B 84, 115406 (2011)

    Article  ADS  Google Scholar 

  48. C. Tao, L. Jiao, O.V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R.B. Capaz, J.M. Tour, A. Zettl, S.G. Louie, H. Dai, M.F. Crommie, Nat. Phys. 7, 616 (2011)

    Article  Google Scholar 

  49. A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 84, 035425 (2011)

    Article  ADS  Google Scholar 

  50. J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. Lett. 99, 177204 (2007)

    Article  ADS  Google Scholar 

  51. W.L. Wang, S. Meng, E. Kaxiras, Nano Lett. 8, 241 (2008)

    Article  ADS  Google Scholar 

  52. M. Ezawa, Phys. Rev. B 77, 155411 (2008)

    Article  ADS  Google Scholar 

  53. A.D. Güçlü, P. Potasz, O. Voznyy, M. Korkusinski, P. Hawrylak, Phys. Rev. Lett. 103, 246805 (2009)

    Article  ADS  Google Scholar 

  54. A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 82, 155445 (2010)

    Article  ADS  Google Scholar 

  55. M. Ezawa, Phys. Rev. B 81, 201402 (2010)

    Article  ADS  Google Scholar 

  56. O. Voznyy, A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 83, 165417 (2011)

    Article  ADS  Google Scholar 

  57. P. Potasz, A.D. Güçlü, O. Voznyy, J.A. Folk, P. Hawrylak, Phys. Rev. B 83, 174441 (2011)

    Article  ADS  Google Scholar 

  58. P. Potasz, A.D. Güçlü, P. Hawrylak, Phys. Rev. B 82, 075425 (2010)

    Article  ADS  Google Scholar 

  59. E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  60. R. Herges, Chem. Rev. 106, 4820 (2006)

    Article  Google Scholar 

  61. D. Ajami, O. Oeckler, A. Simon, R. Herges, Nature 426, 819 (2003)

    Article  ADS  Google Scholar 

  62. K. Wakabayashi, K. Harigaya, J. Phys. Soc. Jpn. 72, 998 (2003)

    Article  ADS  Google Scholar 

  63. K. Harigaya, A. Yamashiro, Y. Shimoi, K. Wakabayashi, Synth. Met. 152, 261 (2005)

    Article  Google Scholar 

  64. D. Jiang, S. Dai, J. Phys. Chem. C 112, 5348 (2008)

    Article  Google Scholar 

  65. E.W.S. Caetano, V.N. Freire, S.G. dos Santos, D.S. Galvao, F. Sato, J. Chem. Phys. 128, 164719 (2008)

    Article  ADS  Google Scholar 

  66. Z.L. Guo, Z.R. Gong, H. Dong, C.P. Sun, Phys. Rev. B 80, 195310 (2009)

    Article  ADS  Google Scholar 

  67. X. Wang, X. Zheng, M. Ni, L. Zou, Z. Zeng, Appl. Phys. Lett. 97, 123103 (2010)

    Article  ADS  Google Scholar 

  68. A. Yamashiro, Y. Shimoi, K. Harigaya, K. Wakabayashi, Phys. Rev. B 68, 193410 (2003)

    Article  ADS  Google Scholar 

  69. K. Harigaya, A. Yamashiro, Y. Shimoi, K. Wakabayashi, Synth. Met. 152, 317 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alev Devrim Güçlü .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Güçlü, A.D., Potasz, P., Korkusinski, M., Hawrylak, P. (2014). Single-Particle Properties of Graphene Quantum Dots. In: Graphene Quantum Dots. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44611-9_4

Download citation

Publish with us

Policies and ethics