Skip to main content

Skeletal Myogenesis in the Zebrafish and Its Implications for Muscle Disease Modelling

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 56))

Abstract

Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions.

Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abmayr SM, Pavlath GK (2012) Myoblast fusion: lessons from flies and mice. Development 139:641–656

    PubMed  CAS  PubMed Central  Google Scholar 

  • Adamo CM, Dai DF, Percival JM, Minami E, Willis MS, Patrucco E, Froehner SC, Beavo JA (2010) Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 107:19079–19083

    PubMed  PubMed Central  Google Scholar 

  • Alexander MS, Kawahara G, Kho AT, Howell MH, Pusack TJ, Myers JA, Montanaro F, Zon LI, Guyon JR, Kunkel LM (2011) Isolation and transcriptome analysis of adult zebrafish cells enriched for skeletal muscle progenitors. Muscle Nerve 43(5):741–750

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allamand V, Sunada Y, Salih MA, Straub V, Ozo CO, Al-Turaiki MH, Akbar M, Kolo T, Colognato H, Zhang X, Sorokin LM, Yurchenco PD, Tryggvason K, Campbell KP (1997) Mild congenital muscular dystrophy in two patients with an internally deleted laminin alpha2-chain. Hum Mol Genet 6(5):747–752

    PubMed  CAS  Google Scholar 

  • Andermarcher E, Surani MA, Gherardi E (1996) Co-expression of the HGF/SF and c-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev Genet 18:254–266

    PubMed  CAS  Google Scholar 

  • Anderson JE, Wozniak AC, Mizunoya W (2012) Single muscle-fiber isolation and culture for cellular, molecular, pharmacological, and evolutionary studies. Methods Mol Biol 798:85–102

    PubMed  CAS  Google Scholar 

  • Arnold HH, Braun T (1996) Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review. Int J Dev Biol 40:345–353

    PubMed  CAS  Google Scholar 

  • Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, Buckingham ME (2006) A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 20:2450–2464

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlindeficient muscular dystrophy. Nature 423:168–172

    PubMed  CAS  Google Scholar 

  • Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira ES, Zatz M, Beckmann JS, Bushby K (1998) A gene related to Caenorhabditis elegans spermatogenesis factor fer-1is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20:37–42

    PubMed  CAS  Google Scholar 

  • Bassett DI, Bryson-Richardson RJ, Daggett DF, Gautier P, Keenan DG, Currie PD (2003) Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 130(25):5851–5860

    PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kalcheim C (2005) Lineage analysis of the avion dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132:689–701

    PubMed  CAS  Google Scholar 

  • Berger J, Berger S, Hall TE, Lieschke GJ, Currie PD (2010) Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology. Neuromuscul Disord 20:826–32

    PubMed  Google Scholar 

  • Berger J, Sztal T, Currie PD (2012) Quantification of birefringence readily measures the level of muscle damage in zebrafish. Biochem Biophys Res Commun 423:785–788

    PubMed  CAS  Google Scholar 

  • Blagden CS, Currie PD, Ingham PW, Hughes SM (1997) Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes Dev 11:2163–2175

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bober E, Lyons GE, Braun T, Cossu G, Buckingham M, Arnold HH (1991) The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113:1255–1265

    PubMed  CAS  Google Scholar 

  • Bonaldo P, Braghetta P, Zanetti M, Piccolo S, Volpin D, Bressan GM (1998) Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Mol Genet 7:2135–2140

    CAS  Google Scholar 

  • Bone Q (1975) Muscular and energetic aspects of fish swimming. Swimming Flying Nature 2:493–528

    Google Scholar 

  • Bone Q (1989) Evolutionary patterns of axial muscle systems in some invertebrates and fish. Am Zool 29:5–18

    Google Scholar 

  • Brand-Saberi B, Christ B (2000) Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol 48:1–42

    PubMed  CAS  Google Scholar 

  • Braun T, Gautel M (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev 12:349–361

    CAS  Google Scholar 

  • Braun T, Bober E, Winter B, Rosenthal N, Arnold HH (1990) Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J 9:821–831

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K (2010) Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci U S A 107(34):15111–15116

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bryson-Richardson RJ, Currie PD (2008) The genetics of vertebrate myogenesis. Nat Rev Genet 9(8):632–646. doi:10.1038/nrg2369

    PubMed  CAS  Google Scholar 

  • Bryson-Richardson RJ, Daggett DF, Cortes F, Neyt C, Keenan DG, Currie PD (2005) Myosin heavy chain expression in zebrafish and slow muscle composition. Dev Dyn 233:1018–1022

    PubMed  CAS  Google Scholar 

  • Camacho Vanegas O, Bertini E, Zhang RZ, Petrini S, Minosse C, Sabatelli P, Giusti B, Chu ML, Pepe G (2001) Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A 98(7516–7521)

    Google Scholar 

  • Carlson BM (1973) The regeneration of skeletal muscle. A review. Am J Anat 137(2):119–149

    PubMed  CAS  Google Scholar 

  • Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cinnamon Y, Kahane N, Kalcheim C (1999) Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. Development 126:4305–4315

    PubMed  CAS  Google Scholar 

  • Cornelison DD (2008) Context matters: in vivo and in vitro influences on muscle satellite cell activity. J Cell Biochem 105:663–669

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    PubMed  CAS  Google Scholar 

  • Cornelison DD, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18:2231–2236

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cossu G, De Angelis L, Borello U, Beraducci B, Buffa V, Sonnino C, Coletta M, Vivarelli E, Bouche M, Lattanzi L, Tosoni D, Di Donna S, Berghella L, Salvatori G, Murphy P, Cusella-de Angelis MG, Molinaro M (2000) Determination, diversification and multipotency of mammalian myogenic cells. Int J Dev Biol 44:699–706

    PubMed  CAS  Google Scholar 

  • Coutelle O, Blagden CS, Hampson R, Halai C, Rigby PW, Hughes SM (2001) Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev Biol 236:136–150

    PubMed  CAS  Google Scholar 

  • Currie PD, Ingham PW (1996) Induction of a specific muscle cell type by a hedgehoglike protein in zebrafish. Nature 382:452–455

    PubMed  CAS  Google Scholar 

  • Currie PD, Ingham PW (2001) Embryonic skeletal muscle in the zebrafish. Muscle growth and development. Academic, NY

    Google Scholar 

  • d’Albis A, Couteaux R, Janmot C, Roulet A, Mira JC (1988) Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur J Biochem 174:103–110

    PubMed  Google Scholar 

  • Davis TA, Fiorotto ML (2009) Regulation of muscle growth in neonates. Curr Opin Clin Nutr Metab Care 12(1):78–85

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000

    PubMed  CAS  Google Scholar 

  • Denetclaw WF, Ordahl CP (2000) The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somites of chicken embryos. Development 127:893–905

    PubMed  CAS  Google Scholar 

  • Deries M, Collins JJ, Duxson MJ (2008) The mammalian myotome: a muscle with no innervation. Evol Dev 10(6):746–755

    PubMed  Google Scholar 

  • Deries M, Schweitzer R, Duxson M (2010) Developmental fate of the mammalian myotome. Dev Dyn 239:2898–2910

    PubMed  Google Scholar 

  • Devoto SH, Melancon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122:3371–3380

    PubMed  CAS  Google Scholar 

  • Devoto SH, Stoiber W, Hammond CL, Steinbacher P, Haslett JR, Barresi MJ, Patterson SE, Adiarte EG, Hughes SM (2006) Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish. Evol Dev 8(1):101–110. doi:10.1111/j.1525-142X.2006.05079.x

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dolez M, Nicolas JF, Hirsinger E (2011) Laminins, via heparan sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating the pattern of BMP responsiveness. Development 138(1)

    Google Scholar 

  • Downs KM, Davies T (1993) Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118:1255–1266

    PubMed  CAS  Google Scholar 

  • Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW (2010) Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci 88:E51–60

    PubMed  CAS  Google Scholar 

  • Edmondson DG, Olson EN (1989) A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3:628–640

    PubMed  CAS  Google Scholar 

  • Ekker SC (2008) Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5:121–123

    PubMed  CAS  PubMed Central  Google Scholar 

  • Enesco M, Puddy D (1964) Increase in the number of nuclei and weight in skeletal muscle of rats of various ages. Am J Anat 114:235–244

    PubMed  CAS  Google Scholar 

  • Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strahle U (2007) The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol 308:133–143

    PubMed  CAS  Google Scholar 

  • Fairclough RJ, Bareja A, Davies KE (2011) Progress in therapy for Duchenne muscular dystrophy. Exp Physiol 96:1101–1113

    PubMed  CAS  Google Scholar 

  • Felsenfeld AL, Curry M, Kimmel CB (1991) The fub-1 mutation blocks initial myofibril formation in the zebrafish muscle pioneer cells. Dev Biol 148:23–30

    PubMed  CAS  Google Scholar 

  • Ferrante MI, Kiff RM, Goulding DA, Stemple DL (2011) Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle. J Cell Sci 124:565–577

    PubMed  CAS  PubMed Central  Google Scholar 

  • Figeac N, Daczewska M, Marcelle C, Jagla K (2007) Muscle stem cells and model systems for their investigation. Dev Dyn 236:3332–3342

    PubMed  Google Scholar 

  • Frontera WR, Zayas AR, Rodriguez N (2012) Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin N Am 23(1):201–207

    PubMed  PubMed Central  Google Scholar 

  • Garry DJ, Yang Q, Bassel-Duby R, Williams RS (1997) Persistent expression of MNF identifies myogenic stem cells in postnatal muscles. Dev Biol 188:280–294

    PubMed  CAS  Google Scholar 

  • Gayraud-Morel B, Chrétien F, Flamant P, Gomès D, Zammit PS, Tajbakhsh S (2007) A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Cell 312(1):13–28

    CAS  Google Scholar 

  • Gibbs EM, Horstick EJ, Dowling JJ (2013) Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS J 280(17):4187–4197

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 14:261–271

    PubMed  CAS  Google Scholar 

  • Goldsmith JR, Jobin C (2012) Think small: Zebrafish as a model systemof human pathology. J Biomed Biotechnol 2012, 817341

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10:1135–1147

    PubMed  CAS  PubMed Central  Google Scholar 

  • Granato M, Nüsslein-Volhard C (1996) Fishing for genes controlling development. Curr Opin Genet Dev 6(4):461–468

    PubMed  CAS  Google Scholar 

  • Granato M, van Eeden FJ, Schach U, Trowe T, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nüsslein-Volhard C (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123:399–413

    PubMed  CAS  Google Scholar 

  • Greer-Walker M, Burd AC, Pull GA (1972) The total number of white skeletal muscl fibres in cross section as a character for stock separation in North sea herring (Clupea harengus). J Cons Int Explor Mer 34:238–243

    Google Scholar 

  • Gros J, Scaal M, Marcelle C (2004) A two-step mechanism for myotome formation in chick. Dev Cell 6:875–882

    PubMed  CAS  Google Scholar 

  • Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958

    PubMed  CAS  Google Scholar 

  • Groves J, Hammond C, Hughes SM (2005) Fgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish. Development 132(19):4211–4222

    PubMed  CAS  Google Scholar 

  • Guo LT, Zhang XU, Kuang W, Xu H, Liu LA, Vilquin JT, Miyagoe-Suzuki Y, Takeda S, Ruegg MA, Wewer UM, Engvall E (2003) Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice. Neuromuscul Disord 13(3):207–215

    PubMed  CAS  Google Scholar 

  • Guyon JR, Steffen LS, Howell MH, Pusack TJ, Lawrence C, Kunkel LM (2007) Modeling human muscle disease in zebrafish. Biochim Biophys Acta 1772(2):205–215

    PubMed  CAS  Google Scholar 

  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nüsslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    PubMed  CAS  Google Scholar 

  • Hall TE, Bryson-Richardson RJ, Berger S, Jacoby AS, Cole NJ, Hollway GE, Berger J, Currie PD (2007) The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA 104(17):7092–7097. doi:10.1073/pnas.0700942104

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hamade A, Deries M, Begemann G, Bally-Cuif L, Genet C, Sabatier F, Bonnieu A, Cousin X (2006) Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Dev Biol 289:127–140

    PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272

    Google Scholar 

  • Hammond CL, Hinits Y, Osborn DP, Minchin JE, Tettamanti G, Hughes SM (2007) Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Dev Biol 302(2):504–521. doi:10.1016/j.ydbio.2006.10.009

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364(6437):501–506. doi:10.1038/364501a0

    PubMed  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  • Hawkins TA, Haramis AP, Etard C, Prodromou C, Vaughan CK, Ashworth R, Ray S, Behra M, Holder N, Talbot WS, Pearl LH, Strähle U, Wilson SW (2008) The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development 135:1147–1156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Helbling-Leclerc A, Zhang X, Topaloglu H, Cruaud C, Tesson F, Weissenbach J, Tomé FM, Schwartz K, Fardeau M, Tryggvason K (1995) Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet 11(2):216–218

    PubMed  CAS  Google Scholar 

  • Helenius IT, Yeh JR (2012) Small zebrafish in a big chemical pond. J Cell Biochem 113(7):2208–2216

    PubMed  CAS  PubMed Central  Google Scholar 

  • Henry CA, Amacher SL (2004) Zebrafish slow muscle cell migration induces a wave of fast muscle morphogenesis. Dev Cell 7:917–923

    PubMed  CAS  Google Scholar 

  • Hinits Y, Osborn DPS, Carvajal JJ, Rigby PWJ, Hughes SM (2007) Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expr Patterns 7:738–745

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hinits Y, Osborn DPS, Hughes SM (2009) Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 136:403–414

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hinits Y, Williams VC, Sweetman D, Donn TM, Ma TP, Moens CB, Hughes SM (2011) Defective cranial development, larval lethality and haploinsufficiency in Myod mutant zebrafish. Dev Biol 358(1):102–112

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hinterberger TJ, Sassoon DA, Rhodes SJ, Konieczny SF (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147:144–156

    PubMed  CAS  Google Scholar 

  • Hirata H, Watanabe T, Hatakeyama J, Sprague SM, Saint-Amant L, Nagashima A, Cui WW, Zhou W, Kuwada JY (2007) Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 134:2771–2781

    PubMed  CAS  Google Scholar 

  • Holley SA (2007) The Genetics and Embryology of Zebrafish Metamerism. Dev Dyn 236:1422–1449

    PubMed  CAS  Google Scholar 

  • Hollway GE, Bryson-Richardson RJ, Berger S, Cole NJ, Hall TE, Currie PD (2007) Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo. Dev Cell 12(2):207–219. doi:10.1016/j.devcel.2007.01.001

    PubMed  CAS  Google Scholar 

  • Horst D, Ustanina S, Sergi C, Mikuz G, Juergens H, Braun T, Vorobyov E (2006) Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int J Dev Biol 50:47–54

    PubMed  CAS  Google Scholar 

  • Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140(24):4982–4987

    PubMed  CAS  Google Scholar 

  • Hu P, Geles KG, Paik JH, DePinho RA, Tjian R (2008) Codependent activators direct myoblast specific MyoD transcription. Dev Cell 15:534–546

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hutcheson DA, Zhao J, Merrell A, Haldar M, Kardon G (2009) Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for b-catenin. Genes Dev 23:997–1013

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jacoby AS, Busch-Nentwich E, Bryson-Richardson RJ, Hall TE, Berger J, Berger S, Sonntag C, Sachs C, Geisler R, Stemple DL, Currie PD (2009) The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development 136(19):3367–3376

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jöbsis GJ, Keizers H, Vreijling JP, de Visser M, Speer MC, Wolterman RA, Baas F, Bolhuis PA (1996) Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 14:113–115

    PubMed  Google Scholar 

  • Johnston IA, Cole NJ, Vieira VLA, Davidson I (1997) Temperature and developmental plasticity of muscle phenotype in herring larvae. J Exp Biol 200:849–868

    PubMed  Google Scholar 

  • Johnston IA, Lee H-T, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, Kinghorn JR, Dalmay T (2009) Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 212:1781–1793

    PubMed  CAS  Google Scholar 

  • Johnston IA, Bower NI, Macqueen DJ (2011) Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol 214:1617–1628

    PubMed  CAS  Google Scholar 

  • Jostes B, Walther C, Gruss P (1990) The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech Dev 33:27–37

    PubMed  CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Kalcheim C (1998) The origin and fate of pioneer myotomal cells in the avian embryo. Mech Dev 74:59–73

    PubMed  CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Kalcheim C (2002) The roles of cell migration and myofiber intercalation in patterning formation of the postmitotic myotome. Development 129:2675–2687

    PubMed  CAS  Google Scholar 

  • Kalcheim C, Ben-Yair R (2005) Cell rearrangements during development of the somite and its derivatives. Curr Opin Genet Dev 15:371–380

    PubMed  CAS  Google Scholar 

  • Kalcheim C, Cinnamon Y, Kahane N (1999) Myotome formation: a multistage process. Cell Tissue Res 296:161–173

    PubMed  CAS  Google Scholar 

  • Kaplan JC (2011) The 2012 version of the gene table of monogenic neuromuscular disorders. Neuromuscul Disord 21:833–861

    PubMed  Google Scholar 

  • Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471

    PubMed  CAS  Google Scholar 

  • Kawahara G, Karpf JA, Myers JA, Alexander MS, Guyon JR, Kunkel LM (2011) Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 108(13):5331–5336

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kettleborough RN, Bruijn E, Eeden F, Cuppen E, Stemple DL (2011) High-throughput target-selected gene inactivation in zebrafish. Methods Cell Biol 104:121–127

    PubMed  CAS  Google Scholar 

  • Kiefer JC, Hauschka SD (2001) Myf-5 is transiently expressed in nonmuscle mesoderm and exhibits dynamic regional changes within the presegmented mesoderm and somites I-IV. Dev Biol 232:77–90

    PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the Zebrafish. Dev Dyn 203:253–310

    PubMed  CAS  Google Scholar 

  • Kobiyama A, Nihei Y, Hirayama Y, Kikuchi Y, Suetake H, Johnston IA, Watabe S (1998) Molecular cloning and developmental expression patterns of the MyoD and MEF2 families of muscle transcription factors in the carp. J Exp Biol 201:2801–2813

    CAS  Google Scholar 

  • Launay T, Armand AS, Charbonnier F, Mira JC, Donsez E, Gallien CL, Chanoine C (2001) Expression and neural control of myogenic regulatory factor genes during regeneration of mouse soleus. J Histochem Cytochem 49(7):887–899

    PubMed  CAS  Google Scholar 

  • Lepper C, Fan CM (2010) Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48:424–436

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460:627–631

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RHJ (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20:31–36

    PubMed  CAS  Google Scholar 

  • Luther PK, Munro LJ, Squire JM (1995) Muscle ultrastructure in the teleost fish. Micron 26:431–459

    Google Scholar 

  • Marschallinger J, Obermayer A, Sänger AM, Stoiber W, Steinbacher P (2009) Postembryonic fast muscle growth of teleost fish depends upon a nonuniformly distributed population of mitotically active Pax7+ precursor cells. Dev Dyn 238(9):2442–2448

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mascarello F, Romanello MG, Scapolo PA (1986) Histochemical and immunohistochemical profile of pink muscle fibres in some teleosts. Histochemistry 84:251–255

    PubMed  CAS  Google Scholar 

  • Maurya AK, Tan H, Souren M, Wang X, Wittbrodt J, Ingham PW (2011) Integration of Hedgehog and BMP signalling by the engrailed2A gene in the zebrafish myotome. Development 138(4):755–765

    PubMed  CAS  Google Scholar 

  • McGeachie JK, Grounds MD (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res 248(1):125–130

    PubMed  CAS  Google Scholar 

  • Mercuri E, Muntoni F (2013) Muscular dystrophies. Lancet 381:845–860

    PubMed  CAS  Google Scholar 

  • Miner JH, Wold B (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A 87:1089–1093

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morin-Kensicki EM, Eisen JS (1997) Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish. Development 124:159–167

    PubMed  CAS  Google Scholar 

  • Morlet K, Grounds MD, McGeachie JK (1989) Muscle precursor replication after repeated regeneration of skeletal muscle in mice. Anat Embryol (Berl) 180(5):471–478

    Google Scholar 

  • Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435

    PubMed  CAS  Google Scholar 

  • Murphy M, Kardon G (2011) Origin of vertebrate limb muscle: the role of progenitor and myoblast populations. Curr Top Dev Biol 96:1–32

    PubMed  CAS  Google Scholar 

  • Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nabeshima Y, Hanaoka K, Hayasaka M, Esuml E, Li S, Nonaka I, Nabeshima Y-I (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–535

    PubMed  CAS  Google Scholar 

  • Nguyen-Chi ME, Bryson-Richardson R, Sonntag C, Hall TE, Gibson A, Sztal T, Chua W, Schilling TF, Currie PD (2012) Morphogenesis and cell fate determination within the adaxial cell equivalence group of the zebrafish myotome. PLoS Genet 8(10):e1003014

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ontell M, Feng KC, Klueber K, Dunn RF, Taylor F (1984) Myosatellite cells, growth, and regeneration in murine dystrophic muscle: a quantitative study. Anat Rec 208:159–174

    PubMed  CAS  Google Scholar 

  • Oppenheim RW (1974) The ontogeny of behaviour in the chick embryo. In: Lehrman DS (ed) Advances in the study of behaviour. Academic, New York, pp 133–172

    Google Scholar 

  • Ott MO, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111(4):1097–1107

    PubMed  CAS  Google Scholar 

  • Otten C, Abdelilah-Seyfried S (2013) Laser-inflicted injury of Zebrafish embryonic skeletal muscle. J Vis Exp 71

    Google Scholar 

  • Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE (2009) Normal table of postembryonic Zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn 238:2975–3015

    PubMed  PubMed Central  Google Scholar 

  • Patterson SE, Mook LB, Devoto SH (2008) Growth in the larval zebrafish pectoral fin and trunk musculature. Dev Dyn 237(2):307–315. doi:10.1002/dvdy.21400

    PubMed  Google Scholar 

  • Pirskanen A, Kiefer JC, Hauschka SD (2000) IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to promote somite myogenesis in vitro. Dev Biol 224(2):189–203

    PubMed  CAS  Google Scholar 

  • Pownall ME, Gustafsson MK, Emerson CPJ (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783

    PubMed  CAS  Google Scholar 

  • Rahimov F, Kunkel LM (2013) Cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol 201(4):499–510

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rawls A, Valdez MR, Zhang W, Richardson J, Klein WH, Olson EN (1998) Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125(13):2349–2358

    PubMed  CAS  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    PubMed  CAS  Google Scholar 

  • Rescan C, Gauvry L (1996) Genome of the rainbow trout (Oncorhynchus mykiss) encodes two distinct muscle regulatory factors with homology to MyoD. Comp Biochem Physiol 113B:711–715

    CAS  Google Scholar 

  • Rescan PY, Montfort J, Fautrel A, Rallière C, Lebret V (2013) Gene expression profiling of the hyperplastic growth zones of the late trout embryo myotome using laser capture microdissection and microarray analysis. BMC Genomics 14(173)

    Google Scholar 

  • Rome LC, Funke RP, Alexander RM, Lutz G, Aldridge H, Scott F (1988) Why animals have different muscle fibre types. Nature 335:824–827

    PubMed  CAS  Google Scholar 

  • Roostalu U, Strähle U (2012) In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 22:515–529

    PubMed  CAS  Google Scholar 

  • Ross JJ, Duxson MJ, Harris AJ (1987) Formation of primary and secondary myotubes in rat lumbrical muscles. Development 100:383–394

    PubMed  CAS  Google Scholar 

  • Rowlerson A, Radaelli G, Mascarello F, Veggetti A (1997) Regeneration of skeletal muscle in two teleost fish: Sparus aurata and Brachydanio rerio. Cell Tissue Res 289(2):311–322

    PubMed  CAS  Google Scholar 

  • Rowlerson A, Veggetti A (2001) Cellular mechanisms of post-embryonic muscle growth in aquaculture species. In: Johnston IA (ed) Muscle development and growth, vol fish physiology series 18. Academic Press, San Diego, pp 103–140

    Google Scholar 

  • Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17:203–209

    PubMed  CAS  Google Scholar 

  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75(7):1351–1359

    PubMed  CAS  Google Scholar 

  • Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37(4):622–632

    PubMed  CAS  Google Scholar 

  • Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, Buckingham M (1989) Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341:303–307

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C (2011) Fibre types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    PubMed  CAS  Google Scholar 

  • Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G (2006) Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci U S A 103:945–950

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schnapp E, Pistocchi AS, Karampetsou E, Foglia E, Lamia CL, Cotelli F, Cossu G (2009) Induced early expression of mrf4 but not myog rescues myogenesis in the myod/myf5 doublemorphant zebrafish embryo. J Cell Sci 122:481–488

    PubMed  CAS  Google Scholar 

  • Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175:84–94

    PubMed  CAS  Google Scholar 

  • Schultz E, Jaryszak DL (1985) Effects of skeletal muscle regeneration on the proliferation potential of satellite cells. Mech Ageing Dev 30:63–72

    PubMed  CAS  Google Scholar 

  • Seger C, Hargrave M, Wang X, Chai RJ, Elworthy S, Ingham PW (2011) Analysis of Pax7 expressing myogenic cells in Zebrafish muscle development, injury, and models of disease. Dev Dyn 240(11):2440–2451

    PubMed  CAS  Google Scholar 

  • Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DYR (2002) Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31:106–110

    PubMed  CAS  Google Scholar 

  • Seo HC, Saetre BO, Havik B, Ellingsen S, Fjose A (1998) The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mech Dev 70:49–63

    PubMed  CAS  Google Scholar 

  • Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20(13):1692–1708. doi:10.1101/gad.1419406

    PubMed  CAS  Google Scholar 

  • Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912):1578–1580

    PubMed  CAS  Google Scholar 

  • Siegel AL, Gurevich DB, Currie PD (2013) A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell. FEBS J 280(17):4074–4088

    PubMed  CAS  Google Scholar 

  • Snow MH (1977) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat Rec 188:181–200

    PubMed  CAS  Google Scholar 

  • Steinbacher P, Haslett JR, Obermayer A, Marschallinger J, Bauer HC, Sänger AM, Stoiber W (2007) MyoD and Myogenin expression during myogenic phases in brown trout: a precocious onset of mosaic hyperplasia is a prerequisite for fast somatic growth. Dev Dyn 236(4):1106–1114

    PubMed  CAS  Google Scholar 

  • Steinbacher P, Marschallinger J, Obermayer A, Neuhofer A, Sanger AM, Stoiber W (2011) Temperature-dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish. J Exp Biol 214:1791–1801

    PubMed  PubMed Central  Google Scholar 

  • Stellabotte F, Dobbs-McAuliffe B, Fernandez DA, Feng X, Devoto SH (2007) Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development 134:1253–1257

    PubMed  CAS  Google Scholar 

  • Stickland NC (1981) Muscle development in the human fetus as exemplified by m. sartorius: a quantitative study. J Anat 132(4):557–579

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stickney HL, Barresi MJ, Devoto SH (2000) Somite development in Zebrafish. Dev Dyn 219:287–303

    PubMed  CAS  Google Scholar 

  • Stoiber W, Sänger AM (1996) An electron microscopic investigation into the possible source of new muscle fibres in teleost fish. Anat Embryol (Berl) 194(6):569–579

    CAS  Google Scholar 

  • Szeto DP, Kimelman D (2006) The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains. Genes Dev 20:1923–1932

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tajbakhsh S, Buckingham ME (2000) The birth of muscle progenitor cells in the mouse: Spatiotemporal considerations. Curr Topic Dev Biol 48:225–268

    CAS  Google Scholar 

  • Telfer WR, Busta AS, Bonnemann CG, Feldman EL, Dowling JJ (2010) Zebrafish models of collagen VI-related myopathies. Hum Mol Genet 19:2433–2444

    PubMed  CAS  PubMed Central  Google Scholar 

  • Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJ, den Dunnen JT, ‘t Hoen PA (2005) Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 6:98

    PubMed  CAS  PubMed Central  Google Scholar 

  • Valdez MR, Richardson JA, Klein WH, Olson EN (2000) Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4. Dev Biol 219(2):287–298

    PubMed  CAS  Google Scholar 

  • van Raamsdonk W, Pool CW, te Kronnie G (1978) Differentiation of muscle fibre types in the teleost Brachydanio rerio, the zebrafish. Anat Embryol 153:137–155

    PubMed  Google Scholar 

  • van Raamsdonk W, te Kronnie G, Pool CW, van de Laarse W (1980) An immonohistochemical and enzymatic characterization of the muscle fibres in myotomal muscle of the teleost Brachtydanio rerio. Acta Histochem 67:200–216

    PubMed  Google Scholar 

  • Venters SJ, Thorsteinsdottir S, Duxson M (1999) Early development of the myotome in the mouse. Dev Dyn 216(3):219–232

    PubMed  CAS  Google Scholar 

  • Venuti JM, Morris JH, Vivian JL, Olson EN, Klein WH (1995) Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol 128(4):563–576

    PubMed  CAS  Google Scholar 

  • Voytik SL, Przyborski M, Badylak SF, Konieczny SF (1993) Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn 198:214–224

    PubMed  CAS  Google Scholar 

  • Wang YH, Li CK, Lee GH, Tsay HJ, Tsai HJ, Chen YH (2008) Inactivation of zebrafish mrf4 leads to myofibril misalignment and motor axon growth disorganization. Dev Dyn 237:1043–1050

    PubMed  CAS  Google Scholar 

  • Waterman RE (1969) Development of the lateral musculature in the teleost, Brachydanio rerio: a fine structure study. Am J Anat 125:457–493

    PubMed  CAS  Google Scholar 

  • Weinberg ES, Allende ML, Kelly CS, Abdelhamid A, Murakami T, Andermann P, Doerre OG, Grunwald DJ, Riggleman B (1996) Developmental regulation of zebrafish MyoD in wild-type, no-tail and spadetail embryos. Development 122:271–280

    PubMed  CAS  Google Scholar 

  • White JD, Scaffidi A, Davies M, McGeachie J, Rudnicki MA, Grounds MD (2000) Myotube formation is delayed but not prevented in MyoD-deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice. J Histochem Cytochem 48:1531–1544

    PubMed  CAS  Google Scholar 

  • White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189

    PubMed  CAS  PubMed Central  Google Scholar 

  • White RB, Biérinx A-S, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10:21

    PubMed  PubMed Central  Google Scholar 

  • Wolff C, Roy S, Ingham PW (2003) Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol 13:1169–1181

    PubMed  CAS  Google Scholar 

  • Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Currie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurevich, D., Siegel, A., Currie, P.D. (2015). Skeletal Myogenesis in the Zebrafish and Its Implications for Muscle Disease Modelling. In: Brand-Saberi, B. (eds) Vertebrate Myogenesis. Results and Problems in Cell Differentiation, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44608-9_3

Download citation

Publish with us

Policies and ethics