Skip to main content

Exchange-Correlation Functionals

  • Chapter
  • First Online:
Many-Body Approach to Electronic Excitations

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 181))

  • 3339 Accesses

Abstract

Crucial for the application of the density functional theory in the framework of the Kohn-Sham ansatz is the knowledge of the exchange-correlation functional, which usually is formulated in terms of a density- and space-dependent exchange-correlation energy per particle. Such a formulation immediately leads to an explicit expression by replacing the density dependence calculated numerically for a homogeneous electron gas by the dependence on the local density of the inhomogenous electron gas. This is the local density approximation (LDA). Generalizations for spin-polarized systems to a local spin density approximation are obvious. Improvements of the local approximation for exchange and correlation include density gradients. A generalized gradient approximation (GGA) has to fulfill the sum rules. Nevertheless, many different functionals can be formulated, e.g. PW91, PBE, AM05, PBEsol, etc. Explicit formulas for some widely used functionals are given. Their applicability and accuracy are discussed and shown, respectively, for test quantities such as lattice constants, bulk moduli, and binding energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Harris, Adiabatic-connection approach to Kohn-Sham theory. Phys. Rev. A 29, 1648–1659 (1984)

    Article  ADS  Google Scholar 

  2. J. Harris, R.O. Jones, The surface energy of a bounded electron gas. J. Phys. F. Metal Phys. 4, 1170–1186 (1974)

    Article  ADS  Google Scholar 

  3. H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937)

    Google Scholar 

  4. R.P. Feynman, Forces in molecules. Phys. Rev. 56, 340–343 (1939)

    Article  ADS  MATH  Google Scholar 

  5. D.C. Langreth, J.P. Perdew, The exchange-correlation energy of a metallic surface. Solid State Commun. 17, 1425–1429 (1975)

    Article  ADS  Google Scholar 

  6. O. Gunnarsson, B.I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13, 4274–4298 (1976)

    Article  ADS  Google Scholar 

  7. U. von Barth, L. Hedin, A local exchange-correlation potential for the spin-polarized case: I. J. Phys. C 5, 1629–1642 (1972)

    Google Scholar 

  8. K.S. Singwi, A. Sjölander, M.P. Tosi, R.H. Land, Electron correlations at metallic densities. IV. Phys. Rev. B 1, 1044–1053 (1970)

    Article  ADS  Google Scholar 

  9. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Karch, Ab-initio Berechnung von statischen und dynamischen Eigenschaften des Diamanten, Siliziums und Siliziumcarbids. Ph.D. thesis, University of Regensburg (1993)

    Google Scholar 

  11. K. Karch, P. Pavone, W. Windl, D. Strauch, F. Bechstedt, Ab initio calculation of structural, lattice dynamical, and thermal properties of cubic silicon carbide. Int. J. Quantum Chem. 56, 801–817 (1995)

    Article  Google Scholar 

  12. A. Garcia, M.L. Cohen, First-principles ionicity scales. I. Charge asymmetry in the solid state. Phys. Rev. B 47, 4215–4220 (1993)

    Article  ADS  Google Scholar 

  13. U. Grossner, J. Furthmüller, F. Bechstedt, Bond-rotation versus bond-contraction relaxation of (110) surfaces of group-III nitrides. Phys. Rev. B 58, R1722–R1725 (1998)

    Article  ADS  Google Scholar 

  14. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)

    Article  ADS  Google Scholar 

  15. G. Ortiz, P. Ballone, Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas. Phys. Rev. B 50, 1391–1405 (1994)

    Article  ADS  Google Scholar 

  16. L. Hedin, B.I. Lundqvist, S. Lundqvist, Local exchange-correlation potentials. Solid State Commun. 9, 537–541 (1971)

    Article  ADS  Google Scholar 

  17. L. Hedin, B.I. Lundqvist, Explicit local exchange-correlation potentials. J. Phys. C 4, 2064–2084 (1971)

    Article  ADS  Google Scholar 

  18. E.P. Wigner, On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)

    Article  ADS  Google Scholar 

  19. E.P. Wigner, Effects of the electron interaction on the energy levels of electrons in metals. Trans. Faraday Soc. 34, 678–685 (1938)

    Article  Google Scholar 

  20. R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  21. M. Gell-Mann, K.A. Brueckner, Correlation energy of an electron gas at high density. Phys. Rev. 106, 364–368 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. W. Macke, Über die Wechselwirkungen im Fermi-Gas: Polarisationserscheinungen, Korrelationsenergie, Elektronenkondensation. Z. Naturforschung 5a, 192–208 (1950)

    Google Scholar 

  23. D.F. du Bois, Electron interactions: part I. Field theory of a degenerate electron gas. Ann. Phys. 7, 174–237 (1959)

    Google Scholar 

  24. W.J. Carr Jr, A.A. Maradudin, Ground-state energy of a high-density electron gas. Phys. Rev. 133, A371–A374 (1964)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)

    Article  ADS  Google Scholar 

  26. D.M. Ceperley, Ground state of the fermion one-component plasma: a Monte Carlo study in two and three dimensions. Phys. Rev. B 18, 3126–3138 (1978)

    Article  ADS  Google Scholar 

  27. I.N. Levine, Quantum Chemistry (Prentice Hall, Upper Saddle River, 2008)

    Google Scholar 

  28. K. Burke, Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012)

    Article  ADS  Google Scholar 

  29. G.H. Booth, A. Grüneis, G. Kresse, A. Alavi, Towards an exact description of electronic wave-functions in real solids. Nature 493, 365–370 (2013)

    Article  ADS  Google Scholar 

  30. N.D. Lang, W. Kohn, Theory of metal surfaces: work function. Phys. Rev. B 3, 1215–1223 (1971)

    Article  ADS  Google Scholar 

  31. C.-O. Almbladh, A.C. Pedroza, Density-functional exchange-correlation potentials and orbital eigenvalues for light atoms. Phys. Rev. A 29, 2322–2330 (1984)

    Article  ADS  Google Scholar 

  32. S. Kurth, J.P. Perdew, Role of the exchange-correlation energy: nature’s glue. Int. J. Quantum Chem. 77, 814–818 (2000)

    Article  Google Scholar 

  33. O. Gunnarsson, M. Jonson, B.I. Lundqvist, Descriptions of exchange and correlation effects in inhomogeneous electron systems. Phys. Rev. B 20, 3136–3164 (1979)

    Article  ADS  Google Scholar 

  34. U. von Barth, A.R. Williams, Applications of density functional theory to atoms, molecules, and solids, in Theory of the Inhomogeneous Electron Gas, Chap. 4, Sect. 2.1.3, ed. by S. Lundqvist, N.H. March (Plenum Press, New York 1983), pp. 189–308

    Google Scholar 

  35. F. Herman, J.P. Van Dyke, I.P. Ortenburger, Improved statistical exchange approximation for inhomogeneous many-electron systems. Phys. Rev. Lett. 22, 807–811 (1969)

    Article  ADS  Google Scholar 

  36. P.S. Svendsen, U. von Barth, Gradient expansion of the exchange energy from second-order density response theory. Phys. Rev. B 54, 17402–17413 (1996)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, Generalized gradient approximations for exchange and correlation: a look backward and forward. Physica B. Condens. Matter 172, 1–6 (1991)

    Article  ADS  Google Scholar 

  38. J.P. Perdew, K. Burke, Comparison shopping for a gradient-corrected density functional. Int. J. Quant. Chem. 57, 309–319 (1996)

    Article  Google Scholar 

  39. J.P. Perdew, Unified theory of exchange and correlation beyond the local density approximation, in Electronic Structure of Solids ’91, ed. by P. Ziesche, H. Eschrig (Akademie-Verlag Berlin, 1991), pp. 11–20

    Google Scholar 

  40. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)

    Article  ADS  Google Scholar 

  41. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  42. M. Fuchs, M. Bockstedte, E. Pehlke, M. Scheffler, Pseudopotential study of binding properties of solids within generalized gradient approximations: the role of core-valence exchange-correlation. Phys. Rev. B 57, 2134–2145 (1998)

    Article  ADS  Google Scholar 

  43. A. Khein, D.J. Singh, C.J. Umrigar, All-electron study of gradient corrections to the local-density functional in metallic systems. Phys. Rev. B 51, 4105–4109 (1995)

    Article  ADS  Google Scholar 

  44. J.B. Hasted, Liquid water: dielectric properties, in Water: A Comprehesive Treatise, vol. 1, ed. by F. Franks (Plenum Press, New York, 1972), pp. 255–309

    Google Scholar 

  45. P.H. Hahn, unpublished

    Google Scholar 

  46. D.R. Hamann, H\(_2\)O hydrogen bonding in density-functional theory. Phys. Rev. B 55, R10157–R10160 (1997)

    Article  ADS  Google Scholar 

  47. R. Brill, A. Tippe, Gitterparameter von Eis I bei tiefen temperaturen. Acta Crystallogr. 23, 343–345 (1967)

    Article  Google Scholar 

  48. P.V. Hobbs, Ice Physics (Clarendon Press, Oxford, 1974)

    Google Scholar 

  49. E. Whalley, The difference in the intermolecular forces of H\(_2\)O and D\(_2\)O. Trans. Faraday Soc. 53, 1578–1585 (1957)

    Article  Google Scholar 

  50. W. Kohn, R. Armiento, Edge electron gas. Phys. Rev. Lett. 81, 3487–3490 (1998)

    Article  ADS  Google Scholar 

  51. R. Armiento, A.E. Mattsson, Functional designed to include surface effects in self-consistent density functional theory. Phys. Rev. B 72, 085108 (2005)

    Article  ADS  Google Scholar 

  52. A.E. Mattsson, R. Armiento, J. Paier, G. Kresse, J.M. Wills, T.R. Mattsson, The AM05 density functional applied to solids. J. Chem. Phys. 128, 084714 (2008)

    Article  ADS  Google Scholar 

  53. J. Paier, private information

    Google Scholar 

  54. L.C. de Carvalho, A. Schleife, F. Bechstedt, Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN polytypes. Phys. Rev. B 84, 195105 (2011)

    Article  ADS  Google Scholar 

  55. S. Kurth, J.P. Perdew, P. Blaha, Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs. Int. J. Quantum Chem. 75, 889–909 (1999)

    Article  Google Scholar 

  56. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Google Scholar 

  57. G. Cappellini, J. Furthmüller, E. Cadelano, F. Bechstedt, Electronic and optical properties of cadmium fluoride: the role of many-body effects. Phys. Rev. B 87, 075203 (2013)

    Article  ADS  Google Scholar 

  58. A.E. Mattsson, R. Armiento, T.R. Mattsson, Comment on “Restoring the density-gradient expansion for exchange in solids and surfaces”. Phys. Rev. Lett. 101, 239701 (2008)

    Article  ADS  Google Scholar 

  59. T.R. Mattsson, unpublished

    Google Scholar 

  60. J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003)

    Article  ADS  Google Scholar 

  61. V.N. Staroverov, G.E. Scusceria, J. Tao, J.P. Perdew, Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 119, 12129–12137 (2003)

    Article  ADS  Google Scholar 

  62. F. Furche, J.P. Perdew, The performance of semilocal and hybrid density functionals in 3\(d\) transition-metal chemistry. J. Chem Phys. 124, 044103 (2006)

    Article  ADS  Google Scholar 

  63. J.P. Perdew, L.A. Constantin, Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy. Phys. Rev. B 75, 155109 (2007)

    Article  ADS  Google Scholar 

  64. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  65. Y. Zhang, W. Yang, Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 80, 890–890 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Bechstedt .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechstedt, F. (2015). Exchange-Correlation Functionals. In: Many-Body Approach to Electronic Excitations. Springer Series in Solid-State Sciences, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44593-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44593-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44592-1

  • Online ISBN: 978-3-662-44593-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics