Skip to main content

Optical Properties

  • Chapter
  • First Online:
Many-Body Approach to Electronic Excitations

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 181))

  • 3327 Accesses

Abstract

The macroscopic dielectric function requires the calculation of optical transition matrix elements. The use of wave functions of the single-particle problem with an effective local potential leads to the equivalence of longitudinal and transverse formulations for the optical transition operator. The advantage of the longitudinal approach is the easy inclusion of effects of spin-orbit interaction and non-localities due to exchange and correlation. The resulting matrix elements depend on the symmetry of initial and final state. The scenario of van Hove singularities to interprete the lineshape of optical spectra is significantly modified by the excitonic Coulomb effects. The excitonic redshift of the optical absorption partly compensates the blue shift due to quasiparticle effects. In addition, a redistribution of spectral strength from higher to lower photon energies and the formation of excitonic bound states occur. The combination of quasiparticle and excitonic effects, despite their treatment within the GW approximation, leads to optical and energy-loss spectra in good agreement with experimental findings. This is illustrated for anorganic and organic crystals but also for low-dimensional systems including molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Grosso, G.P. Parravicini, Solid State Physics (Academic Press, Amsterdam, 2000)

    Google Scholar 

  2. B. Adolph, V.I. Gavrilenko, K. Tenelsen, F. Bechstedt, R. Del Sole, Nonlocality and many-body effects in the optical properties of semiconductors. Phys. Rev. B 53, 9797–9808 (1996)

    Article  ADS  Google Scholar 

  3. M. Rohlfing, S.G. Louie, Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000)

    Article  ADS  Google Scholar 

  4. Z.H. Levine, D.C. Allan, Quasiparticle calculation of the dielectric response of silicon and germanium. Phys. Rev. B 43, 4187–4192 (1991)

    Article  ADS  Google Scholar 

  5. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990)

    Article  ADS  Google Scholar 

  6. K. Schwarz, P. Blaha, Description of an LAPW DF program (WIEN95). Lect. Notes Chem. 67, 139–153 (1996)

    Google Scholar 

  7. http://www.wien2k.at

  8. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  9. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  10. B. Adolph, J. Furthmüller, F. Bechstedt, Optical properties of semiconductors using projector augmented waves. Phys. Rev. B 63, 125108 (2001)

    Article  ADS  Google Scholar 

  11. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)

    Article  ADS  Google Scholar 

  12. http://uni-vienna.at/vasp/

  13. A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, Optical and energy-loss spectra of MgO, ZnO, and CdO from ab-initio many-body calculations. Phys. Rev. B 80, 035112 (2009)

    Article  ADS  Google Scholar 

  14. C. Rödl, F. Bechstedt, Optical and energy-loss spectra of antiferromagnetic transition metal oxides MnO, FeO, CoO, and NiO including quasiparticle and excitonic effects. Phys. Rev. B 86, 235122 (2012)

    Article  ADS  Google Scholar 

  15. A. Schleife, J.B. Varley, F. Fuchs, C. Rödl, F. Bechstedt, P. Rinke, A. Janotti, C.G. Van de Walle, Tin dioxide from first principles: quasiparticle electronic states and optical properties. Phys. Rev. B 83, 035116 (2011)

    Article  ADS  Google Scholar 

  16. A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, F. Bechstedt, Band-structure and optical transition parameters of wurtzite MgO, ZnO, and CdO from quasiparticle calculations. Phys. Status Solidi B 246, 2150–2153 (2009)

    Article  ADS  Google Scholar 

  17. L.C. de Carvalho, A. Schleife, F. Bechstedt, Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN polytypes. Phys. Rev. B 84, 195105 (2011)

    Article  ADS  Google Scholar 

  18. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  19. L.P. Bouckaert, R. Smoluchowski, E. Wigner, Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50, 58–67 (1936)

    Article  ADS  MATH  Google Scholar 

  20. E.I., Rashba, Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Fiz. Tverd. Tela (Leningrad) 2, 1224–1238 (1960) [Phys. Sol. State (English Transl.) 2, 1109–1122 (1960)]

    Google Scholar 

  21. J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Effects of the narrow band gap on the properties of InN. Phys. Rev. B 66, 201403 (2002)

    Article  ADS  Google Scholar 

  22. S.P. Fu, Y.F. Chen, Effective mass of InN epilayers. Appl. Phys. Lett. 85, 1523–1525 (2004)

    Article  ADS  Google Scholar 

  23. A.V. Rodina, B.K. Meyer, Anisotropy of conduction band \(g\) values and interband momentum matrix elements in wurtzite GaN. Phys. Rev. B 64, 245209 (2001)

    Article  ADS  Google Scholar 

  24. S. Shokhovets, O. Ambacher, B.K. Meyer, G. Gobsch, Anisotropy of the momentum matrix element, dichroism, and conduction-band dispersion relation of wurtzite semiconductors. Phys. Rev. B 78, 035207 (2008)

    Article  ADS  Google Scholar 

  25. F. Fuchs, C. Rödl, A. Schleife, F. Bechstedt, Efficient \(O(N^2)\) approach to solve the Bethe-Salpeter equation for excitonic bound states. Phys. Rev. B 78, 085103 (2008)

    Article  ADS  Google Scholar 

  26. L.X. Benedict, E.L. Shirley, Ab initio calculation of \(\varepsilon _2(\omega )\) including the electron-hole interaction: application to GaN and CaF\(_2\). Phys. Rev. B 59, 5441–5451 (1999)

    Article  ADS  Google Scholar 

  27. L.X. Benedict, E.L. Shirley, R.B. Bohn, Theory of optical absorption in diamond, Si, Ge, and GaAs. Phys. Rev. B 57, R9385–R9387 (1998)

    Article  ADS  Google Scholar 

  28. B. Arnaud, M. Alouani, Electron-hole excitations in Mg\(_2\)Si and Mg\(_2\)Ge compounds. Phys. Rev. B 64, 033202 (2001)

    Article  ADS  Google Scholar 

  29. C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, Ab initio theory of excitons and optical properties for spin-polarized systems. Application to antiferromagnetic MnO. Phys. Rev. B 72, 184408 (2008)

    Article  Google Scholar 

  30. W.G. Schmidt, S. Glutsch, P.H. Hahn, F. Bechstedt, Efficient \(O(N^2)\) method to solve the Bethe-Salpeter equation. Phys. Rev. B 67, 085307 (2003)

    Article  ADS  Google Scholar 

  31. D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983)

    Article  ADS  Google Scholar 

  32. S. Albrecht, L. Reining, R. Del Sole, G. Onida, Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80, 4510–4513 (1998)

    Article  ADS  Google Scholar 

  33. M.L. Bortz, R.H. French, D.J. Jones, R.V. Kasowski, F.S. Obuchi, Temperature dependence of the electronic structure of oxides: MgO, MgAl\(_2\)O\(_4\) and Al\(_2\)O\(_3\). Phys. Scr. 41, 537–541 (1990)

    Article  ADS  Google Scholar 

  34. G. Cappellini, J. Furthmüller, E. Cadelano, F. Bechstedt, Electronic and optical properties of cadmium fluoride: the role of many-body effects. Phys. Rev. B 87, 075203 (2013)

    Article  ADS  Google Scholar 

  35. A. Riefer, F. Fuchs, C. Rödl, A. Schleife, F. Bechstedt, R. Goldhahn, Interplay of excitonic effects and van Hove singularities in optical spectra: CaO and AlN polymorphs. Phys. Rev. B 84, 075218 (2011)

    Article  ADS  Google Scholar 

  36. M. Röppischer, R. Goldhahn, G. Rossbach, P. Schley, C. Cobet, N. Esser, T. Schupp, K. Lischka, D.J. As, Dielectric function of zinc-blende AlN from 1 to 20 eV: band gap and van Hove singularities. J. Appl. Phys. 106, 076104 (2009)

    Article  ADS  Google Scholar 

  37. G. Rossbach, M. Röppischer, P. Schley, G. Gobsch, C. Werner, C. Cobet, N. Esser, A. Dadgar, M. Wieneke, A. Krost, R. Goldhahn, Valence-band splitting and optical anisotropy of AlN. Phys. Status Solidi B 247, 1679–1682 (2010)

    Article  Google Scholar 

  38. R. Leitsmann, W.G. Schmidt, P.H. Hahn, F. Bechstedt, Second-harmonic polarizability including electron-hole attraction from band-struture theory. Phys. Rev. B 71, 1952 (2005)

    Article  Google Scholar 

  39. H-Ch. Weissker, J. Furthmüller, F. Bechstedt, Structure- and spin-dependent excitation energies and lifetimes of Si and Ge nanocrystals from ab initio calculations. Phys. Rev. B 69, 115310 (2004)

    Article  ADS  Google Scholar 

  40. P. Puschnig, A. Ambrosch-Draxl, Optical absorption spectra of semiconductors and insulators including electron-hole correlations: an ab initio study within the LAPW method. Phys. Rev. B 66, 165105 (2002)

    Article  ADS  Google Scholar 

  41. M. Rohlfing, S.G. Louie, Electron-hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81, 2312–2315 (1998)

    Article  ADS  Google Scholar 

  42. B. Arnaud, M. Alouani, Local-field and excitonic effects in the calculated optical properties of semiconductors from first-principles. Phys. Rev. B 63, 085208 (2001)

    Article  ADS  Google Scholar 

  43. D.M. Roessler, W.C. Walker, Optical constants of magnesium oxide and lithium fluoride in the far ultraviolet. J. Opt. Soc. Am. 57, 835–836 (1967)

    Article  Google Scholar 

  44. A. Marini, R. Del Sole, Dynamical excitonic effects in metals and semiconductors. Phys. Rev. Lett. 91, 176402 (2003)

    Article  ADS  Google Scholar 

  45. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)

    Google Scholar 

  46. M. Rakel, C. Cobet, N. Esser, P. Gori, O. Pulci, A. Seitsonen, A. Cricenti, N. Nickel, W. Richter, Electronic and optical properties of ZnO between 3 and 32 eV, in Epioptics-9, Proceedings of the 39th International School on Solid State Physics, Erice (Italy), 2006. ed. by A. Cricenti (World Scientific Publ. Co, New Jersey, 2008), pp. 115–123

    Google Scholar 

  47. A. Bourdillon, J. Beaumont, The reflection spectra of SrCl\(_2\) and CdF\(_2\). J. Phys. C 9, L473–L477 (1976)

    Article  ADS  Google Scholar 

  48. D.R. Bosomworth, Far-infrared optical properties of CaF\(_2\), SrF\(_2\), BaF\(_2\), and CdF\(_2\). Phys. Rev. 157, 709–715 (1967)

    Article  ADS  Google Scholar 

  49. B. Krukowska-Fule, T. Niemyski, Preparation and some properties of CdF2 single crystals. J. Cryst. Growth 1, 183–186 (1967)

    Google Scholar 

  50. J.L. Freeouf, Far-ultraviolet reflectance of II–VI compounds and correlation with the Penn-Phillips gap. Phys. Rev. B 7, 3810–3830 (1973)

    Article  ADS  Google Scholar 

  51. P. Cudazzo, M. Gatti, A. Rubio, Excitons in molecular crystals from first-principles many-body perturbation theory: picene versus pentacene. Phys. Rev. B 86, 195307 (2012)

    Article  ADS  Google Scholar 

  52. A.S. Davydov, Theory of Molecular Excitons (McGraw-Hill, New York, 1962)

    Google Scholar 

  53. G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002)

    Article  ADS  Google Scholar 

  54. K. Hummer, P. Puschnig, C. Ambrosch-Draxl, Lowest optical excitations in molecular crystals: bound exciton versus free electron-hole pairs in anthracene. Phys. Rev. Lett. 92, 147402 (2004)

    Article  ADS  Google Scholar 

  55. E.A. Silinsh, Organic Molecular Crystals (Springer, Berlin, 1980)

    Book  Google Scholar 

  56. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999)

    Google Scholar 

  57. L.E. Lyons, G.C. Moris, The intensity of ultraviolet light absorption by monocrystals. Part III. Absorption by anthracene at 295\(^\circ \)K, 90\(^\circ \)K, and 4\(^\circ \)K of plane-polarised light of wavelengths 1600–2750 Å. J. Chem. Soc. 299, 1551–1558 (1959)

    Google Scholar 

  58. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005)

    Google Scholar 

  59. W.A. Harrison, Elementary Electronic Structure (World Scientific, Singapore, 1999)

    Book  Google Scholar 

  60. P.H. Hahn, W.G. Schmidt, K. Seino, M. Preuss, F. Bechstedt, J. Bernholc, Optical absorption of water: Coulomb effects versus hydrogen bonding. Phys. Rev. Lett. 94, 037404 (2005)

    Article  ADS  Google Scholar 

  61. P.H. Hahn, W.G. Schmidt, F. Bechstedt, Molecular electronic excitations calculated from a solid-state approach: methodology and numerics. Phys. Rev. B 72, 245425 (2005)

    Article  ADS  Google Scholar 

  62. K. Kobayashi, Optical spectra and electronic structure of ice. J. Phys. Chem. 87, 4317–4321 (1983)

    Article  Google Scholar 

  63. R.S. Knox, Theory of Excitons (Academic Press, New York, 1963)

    MATH  Google Scholar 

  64. Y.M. Ksendzov, I.L. Korobova, K.K. Sidorin, G.P. Startsev, Elektronnaya struktura MnO. Fiz. Tverd. Tela (Leningrad) 18, 173–179 (1976)

    Google Scholar 

  65. R.J. Powell, W.E. Spicer, Optical properties of NiO and CoO. Phys. Rev. B 2, 2182–2193 (1970)

    Article  ADS  Google Scholar 

  66. B. Fromme, U. Brunokowski, E. Kisker, d–d excitations and interband transitions in MnO: a spin-polarized electron-energy-loss study. Phys. Rev. B 58, 9783–9792 (1998)

    Article  ADS  Google Scholar 

  67. A. Gorschlüter, H. Merz, EELS study of single crystalline NiO(100). Int. J. Mod. Phys. B 7, 341–344 (1993)

    Article  ADS  Google Scholar 

  68. B.C. Larson, W. Ku, J.Z. Tischler, C.-C. Lee, O.D. Restrepo, A.G. Eguiluz, P. Zschakc, K.D. Finkelstein, Nonresonant inelastic X-ray scattering and energy-resolved Wannier function investigation of d-d excitations in NiO and CoO. Phys. Rev. Lett. 99, 026401 (2007)

    Article  ADS  Google Scholar 

  69. I. Pollini, J. Thomas, B. Carricaburu, R. Mamy, Optical and electron energy loss experiments in ionic CrBr\(_3\) crystals. J. Phys. Condens. Mat. 1, 7695–7704 (1989)

    Google Scholar 

  70. G. Guizzetti, L. Nosenzo, I. Pollini, E. Reguzzoni, G. Samoggia, G. Spinolo, Reflectance and thermoreflectance studies of CrCl\(_3\), CrBr\(_3\), NiCl\(_2\), and NiBr\(_2\) crystals. Phys. Rev. B 14, 4622–4629 (1976)

    Article  ADS  Google Scholar 

  71. C. Rödl, Elektronische und exzitonische Anregungen in magnetischen Isolatoren. Ph.D. thesis. Friedrich-Schiller-Universität Jena (2009)

    Google Scholar 

  72. P. Cudazzo, C. Attacalite, I.V. Tokatly, A. Rubio, Strong charge-transfer excitonic effects and Bose-Einstein exciton condensate in graphane. Phys. Rev. Lett. 104, 226804 (2010)

    Article  ADS  Google Scholar 

  73. O. Pulci, P. Gori, M. Marsili, V. Garbuio, R. Del Sole, F. Bechstedt, Strong excitons in novel two-dimensional crystals: silicane and germanane. EPL 98, 37004 (2012)

    Article  ADS  Google Scholar 

  74. F. Bechstedt, Principles of Surface Physics (Springer, Berlin, 2003)

    Book  Google Scholar 

  75. M. Rohlfing, S.G. Louie, Excitons and optical spectrum of the Si(111)-(2\(\times \)1) surface. Phys. Rev. Lett. 83, 856–859 (1999)

    Article  ADS  Google Scholar 

  76. P. Chiradia, A. Cricenti, S. Selci, G. Chiarotti, Differential reflectivity of Si(111)2\(\times \)1 surface with polarized light: a test for surface structure. Phys. Rev. Lett. 52, 1145–1147 (1984)

    Article  ADS  Google Scholar 

  77. M. Bruno, M. Palummo, A. Marini, R. Del Sole, V. Olevano, A.N. Kholod, S. Ossicini, Excitons in germanium nanowires: quantum confinement, orientation, and anisotropy effects within first-principles approach. Phys. Rev. B 72, 153310 (2005)

    Article  ADS  Google Scholar 

  78. D. Rocca, D. Lu, G. Galli, Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. J. Chem. Phys. 133, 164109 (2010)

    Article  ADS  Google Scholar 

  79. L. Serrano-Andres, M. Fulscher, Theoretical study of the electronic spectroscopy of peptides. III. Charge-transfer transitions in polypeptides. J. Am. Chem. Soc. 120, 10912–10920 (1998)

    Article  Google Scholar 

  80. M.L. Tiago, J.R. Chelikowsky, Optical excitations in organic molecules, clusters, and defects studied by first-principles Green’s function methods. Phys. Rev. B 73, 205334 (2006)

    Article  ADS  Google Scholar 

  81. P. Rinke, A. Schleife, E. Kioupakis, A. Janotti, C. Rödl, F. Bechstedt, M. Scheffler, C.G. Van de Walle, First-principles optical spectra for F centers in MgO. Phys. Rev. Lett. 108, 126404 (2012)

    Article  ADS  Google Scholar 

  82. L.A. Kappers, R.L. Kroes, E.B. Hensley, F\(^+\) and F\(^{\prime }\) centers in magnesium oxide. Phys. Rev. B 1, 4151–4157 (1970)

    Article  ADS  Google Scholar 

  83. G.H. Rosenblatt, M.W. Rowe, G.P. Williams, R.T. Williams, Y. Chen, Luminescence of F and F\(^+\) centers in magnesium oxide. Phys. Rev. B 39, 10309–10318 (1989)

    Article  ADS  Google Scholar 

  84. B.K. Ridley, Quantum Processes in Semiconductors (Clarendon Press, Oxford, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Bechstedt .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechstedt, F. (2015). Optical Properties. In: Many-Body Approach to Electronic Excitations. Springer Series in Solid-State Sciences, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44593-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44593-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44592-1

  • Online ISBN: 978-3-662-44593-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics