Skip to main content

Hamiltonian of Interacting Electrons

  • Chapter
  • First Online:
  • 3458 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 181))

Abstract

Relativistic effects also influence the motion of electrons. They are described in the framework of the Pauli equation but with a velocity operator from the more general Dirac theory. The moving electrons generate an electromagnetic field beyond the electric field due to the nuclei. It describes the electron-electron interaction and depends on the position, momentum and spin operator of each individual electron in a self-consistent manner. The electromagnetic field is calculated up to the second order in the ratio of electron velocity and speed of light. Besides the well-known scalar-relativistic corrections, the Darwin and mass-correction terms, and the spin-orbit interaction known for isolated atoms, an additional relativistic effect, the Breit interaction, is described by the coupling of the vector potential to the mechanical momentum and of the magnetic field to the electron spin. In addition to the non-relativistic mutual Coulomb interaction of the electrons, the longitudinal one, a relativistic transverse interaction appears, which, however, can be neglected in non-magnetic systems or systems where the spin-orbit coupling predominates the magnetic dipole-dipole interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.A.M. Dirac, The quantum theory of the electron. Proc. Roy. Soc. London Ser. A 117, 610–624 (1928)

    Article  ADS  MATH  Google Scholar 

  2. P.A.M. Dirac, The quantum theory of the electron. Part II. Proc. Roy. Soc. London Ser. A 118, 351–361 (1928)

    Article  ADS  MATH  Google Scholar 

  3. L.L. Foldy, S.A. Wouthuysen, On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29–36 (1958)

    Article  ADS  Google Scholar 

  4. G. Breit, The effect of retardation on the interaction of two electrons. Phys. Rev. 34, 553–573 (1929)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. G. Breit, The fine structure of He as a test of the spin interactions of two electrons. Phys. Rev. 36, 383–397 (1930)

    Article  ADS  MATH  Google Scholar 

  6. G. Breit, Dirac’s equation for the spin-spin interaction of two electrons. Phys. Rev. 39, 616–624 (1932)

    Article  ADS  Google Scholar 

  7. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Systems (Springer, Berlin, 1957)

    Book  Google Scholar 

  8. P. Strange, Relativistic Quantum Mechanics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  9. M. Reiher, A. Wolf, Relativistic Quantum Chemistry. The Fundamental Theory of Molecular Science (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009)

    Google Scholar 

  10. P. Pyykkö, Relativistic quantum chemistry. Adv. Quantum Chem. 11, 353–409 (1978)

    Article  ADS  Google Scholar 

  11. P. Pyykkö, Relativistic effects on periodic trends, in The Effects of Relativity in Atoms, Molecules and the Solid-State, ed. by S. Wilson, I.P. Grant, B.L. Gyorffy (Plenum Press, New York and London, 1991), pp. 1–13

    Chapter  Google Scholar 

  12. E. Engel, Relativistic density functional theory: foundations and basic formalism, in Relativistic Electronic Structure Theory, Part 1, ed. by P. Schwerdtfeger (Elsevier, Amsterdam, 2002), pp. 523–621

    Chapter  Google Scholar 

  13. E. Engel, R.M. Dreizler, S. Varga, B. Fricke, Relativistic density functional theory, in Relativistic Effects in Heavy-Element Chemistry and Physics, ed. by B.A. Hess (Wiley, New York, 2003), pp. 123–164

    Google Scholar 

  14. W. Pauli, Zur Quantenmechanik des magnetischen Elektrons. Z. Physik 43, 601–623 (1927)

    Article  ADS  MATH  Google Scholar 

  15. P.L. Taylor, O. Heinonen, A Quantum Approach to Condensed Matter Physics (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  16. M.S. Brand, M. Stutzmann, Spin-dependent conductivity in amorphous hydrogenated silicon. Phys. Rev. B 43, 518–5187 (1991)

    ADS  Google Scholar 

  17. A.I. Akhiezer, V.B. Berestetsky, Quantum Electrodynamics (Interscience, New York, 1965)

    Google Scholar 

  18. N. Scott, P. Burke, Electron scattering by atoms and ions using the Breit-Pauli Hamiltonian: an R-Matrix approach. J. Phys. B. Atom. Molec. Phys. 13, 4299–4314 (1980)

    Google Scholar 

  19. J. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  20. D.D. Koelling, B.N. Harmon, A technique for relativistic spin-polarized calculations. J. Phys. C 10, 3107–3114 (1977)

    Article  ADS  Google Scholar 

  21. D. Hobbs, G. Kresse, J. Hafner, Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62, 11556–11570 (2000)

    Article  ADS  Google Scholar 

  22. A. Dal Corso, Projector augmented wave method with spin-orbit coupling: applications to simple solids and zincblende-type semiconductors. Phys. Rev. B 86, 085135 (2012)

    Google Scholar 

  23. G. Theurich, N.A. Hill, Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials. Phys. Rev. B 64, 073106 (2001)

    Article  ADS  Google Scholar 

  24. A. Dal Corso, A. Mosca Conte, Spin-orbit coupling with ultrasoft pseudopotentials: application to Au and Pt. Phys. Rev. B 71, 115106 (2005)

    Google Scholar 

  25. G.B. Bachelet, M. Schlüter, Relativistic norm-conserving pseudopotentials. Phys. Rev. B 25, 3103–2108 (1982)

    Article  ADS  Google Scholar 

  26. G.B. Bachelet, D.R. Hamann, M. Schlüter, Pseudopotentials that work: from H to Pu. Phys. Rev. B 26, 4199–4228 (1982)

    Article  ADS  Google Scholar 

  27. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990)

    Article  ADS  Google Scholar 

  28. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991)

    Article  ADS  Google Scholar 

  29. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

    Article  ADS  Google Scholar 

  30. H.J.F. Jansen, Magnetic anisotropy in density-functional theory. Phys. Rev. B 59, 4699–4707 (1999)

    Article  ADS  Google Scholar 

  31. H. Alloul, Introduction to the Physics of Electrons in Solids (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  32. A. Schrön, C. Rödl, F. Bechstedt, Crystal symmetry and magnetic anisotropy of 3d-transition metal monoxides. Phys. Rev. B 86, 115134 (2012)

    Article  ADS  Google Scholar 

  33. M. Lax, Symmetry Principles in Solid State and Molecular Physics (Dover Publications Inc, Mineola, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Bechstedt .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechstedt, F. (2015). Hamiltonian of Interacting Electrons. In: Many-Body Approach to Electronic Excitations. Springer Series in Solid-State Sciences, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44593-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44593-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44592-1

  • Online ISBN: 978-3-662-44593-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics