Timed Multiparty Session Types

  • Laura Bocchi
  • Weizhen Yang
  • Nobuko Yoshida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8704)


We propose a typing theory, based on multiparty session types, for modular verification of real-time choreographic interactions. To model real-time implementations, we introduce a simple calculus with delays and a decidable static proof system. The proof system ensures type safety and time-error freedom, namely processes respect the prescribed timing and causalities between interactions. A decidable condition on timed global types guarantees time-progress for validated processes with delays, and gives a sound and complete characterisation of a new class of CTAs with general topologies that enjoys progress and liveness.


Proof System Ready Action Proof Rule Global Type Clock Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Timed conversation API for Python,
  2. 2.
    Akshay, S., Gastin, P., Mukund, M., Kumar, K.N.: Model checking time-constrained scenario-based specifications. In: FSTTCS. LIPIcs, vol. 8, pp. 204–215 (2010)Google Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Apt, K.R., Francez, N., Katz, S.: Appraising fairness in distributed languages. In: POPL, pp. 189–198. ACM (1987)Google Scholar
  5. 5.
    Berger, M., Yoshida, N.: Timed, distributed, probabilistic, typed processes. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 158–174. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30, 323–342 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party session. Logical Methods in Computer Science 8(1) (2012)Google Scholar
  10. 10.
    Clemente, L., Herbreteau, F., Stainer, A., Sutre, G.: Reachability of communicating timed processes. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 81–96. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating automata: Characterisation and synthesis of global session types. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 174–186. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Fischer, M., et al.: A new time extension to π-calculus based on time consuming transition semantics. In: Languages for System Specification, pp. 271–283 (2004)Google Scholar
  13. 13.
    Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL, pp. 273–284. ACM (2008)Google Scholar
  14. 14.
    Krčál, P., Yi, W.: Communicating timed automata: The more synchronous, the more difficult to verify. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 249–262. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Lapadula, A., Pugliese, R., Tiezzi, F.: C[Equation image]WS: A timed service-oriented calculus. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 275–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    López, H.A., Pérez, J.A.: Time and exceptional behavior in multiparty structured interactions. In: Carbone, M., Petit, J.-M. (eds.) WS-FM 2011. LNCS, vol. 7176, pp. 48–63. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Ocean Observatories Initiative (OOI).,
  18. 18.
    Saeedloei, N., Gupta, G.: Timed π-calculus. In: TGC. LNCS (2013) (to appear)Google Scholar
  19. 19.
    Savara JBoss Project,
  20. 20.
    Scribble Project homepage,
  21. 21.
    Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Technical Report, Department of Computing, Imperial College London (May 2014) (March 2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laura Bocchi
    • 1
  • Weizhen Yang
    • 1
  • Nobuko Yoshida
    • 1
  1. 1.Imperial College LondonLondonUK

Personalised recommendations