Controllers for the Verification of Communicating Multi-pushdown Systems

  • C. Aiswarya
  • Paul Gastin
  • K. Narayan Kumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8704)


Multi-pushdowns communicating via queues are formal models of multi-threaded programs communicating via channels. They are turing powerful and much of the work on their verification has focussed on under-approximation techniques. Any error detected in the under-approximation implies an error in the system. However the successful verification of the under-approximation is not as useful if the system exhibits unverified behaviours. Our aim is to design controllers that observe/restrict the system so that it stays within the verified under-approximation. We identify some important properties that a good controller should satisfy. We consider an extensive under-approximation class, construct a distributed controller with the desired properties and also establish the decidability of verification problems for this class.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. Journal of the ACM 56, 16:1–16:43 (2009)Google Scholar
  2. 2.
    Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is 2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 121–133. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-pushdown languages and grammars. Int. J. Found. Comput. Sci. 7(3), 253–292 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars, pp. 313–400. World Scientific (1997)Google Scholar
  5. 5.
    Cyriac, A.: Verification of Communicating Recursive Programs via Split-width. PhD thesis, ENS Cachan (2014),
  6. 6.
    Cyriac, A., Gastin, P., Narayan Kumar, K.: MSO decidability of multi-pushdown systems via split-width. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 547–561. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Cyriac, A., Gastin, P., Narayan Kumar, K.: Controllers for the Verification of Communicating Multi-pushdown Systems. Technical report (2014),
  8. 8.
    Cyriac, A., Gastin, P., Narayan Kumar, K.: Verifying Communicating Multi-pushdown Systems. Technical report (January 2014),
  9. 9.
    Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algorithms for existentially bounded communicating automata. Information and Computation 204(6), 920–956 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level MSCs: Model-checking and realizability. Journal of Computer and System Sciences 72(4), 617–647 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M.A., Thiagarajan, P.S.: A theory of regular MSC languages. Inf. Comput. 202(1), 1–38 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of communicating pushdown systems. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 267–281. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In: LICS, pp. 161–170. IEEE Computer Society Press (2007)Google Scholar
  14. 14.
    La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization of double exponential time. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 33–48. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-bounded matching relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball, T., Sagiv, M. (eds.) POPL, pp. 283–294. ACM (2011)Google Scholar
  18. 18.
    Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique et Applications 21, 99–135 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. Aiswarya
    • 1
  • Paul Gastin
    • 2
  • K. Narayan Kumar
    • 3
  1. 1.Uppsala UniversitySweden
  2. 2.LSV, ENS Cachan, CNRS & INRIAFrance
  3. 3.Chennai Mathematical InstituteIndia

Personalised recommendations