Decidable Topologies for Communicating Automata with FIFO and Bag Channels

  • Lorenzo Clemente
  • Frédéric Herbreteau
  • Grégoire Sutre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8704)


We study the reachability problem for networks of finite-state automata communicating over unbounded perfect channels. We consider communication topologies comprising both ordinary FIFO channels and bag channels, i.e., channels where messages can be freely reordered. It is well-known that when only FIFO channels are considered, the reachability problem is decidable if, and only if, there is no undirected cycle in the topology. On the other side, when only bag channels are allowed, the reachability problem is decidable for any topology by a simple reduction to Petri nets. In this paper, we study the more complex case where the topology contains both FIFO and bag channels, and we provide a complete characterisation of the decidable topologies in this generalised setting.


Label Transition System Directed Cycle Reachability Problem Communication Topology Directed Walk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P.A., Atig, M.F., Cederberg, J.: Analysis of message passing programs using SMT-solvers. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 272–286. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P., Jonsson, B.: Verifying programs with unreliable channels. Inf. Comput. 127(2), 91–101 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with infinite state spaces using QDDs. Form. Methods Sys. Des. 14, 237–255 (1999)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 451–465. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf. Comput. 202(2), 166–190 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than perfect channels. Inf. Comput. 124(1), 20–31 (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chambart, P., Schnoebelen, P.: Mixing lossy and perfect fifo channels. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. ACM Trans. Program. Lang. Syst. 34(1), 1–6 (2012)CrossRefGoogle Scholar
  10. 10.
    Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 319–333. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of communicating pushdown systems. LMCS 8(3), 1–20 (2012)Google Scholar
  12. 12.
    Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. SIGPLAN Not. 42(1), 339–350 (2007)CrossRefGoogle Scholar
  13. 13.
    Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: Proc. STOC 1982, pp. 267–281 (1982) (preliminary version)Google Scholar
  14. 14.
    La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Leroux, J.: Vector addition system reachability problem: A short self-contained proof. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 41–64. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Mayr, E.: An algorithm for the general petri net reachability problem. In: Proc. STOC 1981, pp. 238–246 (1981)Google Scholar
  17. 17.
    Milner, R.: Communication and Concurrency. Prentice-Hall (1989)Google Scholar
  18. 18.
    Pachl, J.K.: Reachability problems for communicating finite state machines. Research Report CS-82-12, University of Waterloo (May 1982)Google Scholar
  19. 19.
    Sen, K., Viswanathan, M.: Model checking multithreaded programs with asynchronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 300–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lorenzo Clemente
    • 1
  • Frédéric Herbreteau
    • 2
  • Grégoire Sutre
    • 2
  1. 1.Université Libre de BruxellesBrusselsBelgium
  2. 2.Univ. Bordeaux and CNRS, LaBRI, UMR 5800TalenceFrance

Personalised recommendations