Skip to main content

Reduction of Reaction Mechanisms

  • Chapter
  • First Online:
Analysis of Kinetic Reaction Mechanisms

Abstract

Increases in both chemical kinetics knowledge and the capacity of computers have led to the availability of very large detailed kinetic mechanisms for many problems. These mechanisms may contain up to several thousand species and several ten thousand reaction steps. For computational reasons, however, large mechanisms still cannot be used in spatially 2D or 3D computational fluid dynamics simulations, where the applied mechanism typically requires less than 100 species. Also, within such large mechanisms, the key processes can be masked by the presence of many reaction steps of only marginal importance. A first step to reducing the size of a kinetic mechanism is to identify species and reaction steps which do not need to be included in order to accurately predict the key target outputs of the model. Such methods lead to so-called “skeletal” schemes. This chapter discusses many different methods for the identification of redundant species and reaction steps within a mechanism, including those based on sensitivity and Jacobian analyses, the comparison of reaction rates, trial and error and calculated entropy production. Another family of methods for the development of skeletal schemes is based on the investigation of reaction graphs. We discuss here the directed relation graph (DRG) method and its derivatives, and the path flux analysis (PFA) method. Mechanism reduction may be also based on optimisation methods which minimise an objective function related to the simulation error between the full and reduced models, subject to a set of constraints (e.g. numbers of species required). Integer programming and genetic algorithm-based methods have been used for such an optimisation and are discussed here. From these skeletal schemes, subsequent reductions can be achieved via either species or reaction lumping. Chemical and mathematical approaches to lumping are discussed with applications in combustion, atmospheric and biological systems. Reduction methods based on timescale separation are then introduced starting with the classic quasi-steady-state approximation (QSSA). Computational singular perturbation (CSP) methods are then described as a means of informing the derivation of analytically reduced models. Further efficiency gains can also be obtained by using a numerical approximation of a function in place of more traditional descriptions of chemical source terms within simulation models. The generation of such numerical reduced models can be based on the original differential equations and the thermodynamics of the problem or deduced from the simulation results. Using any of these methods, the applied function has to meet special requirements, such as the need to be evaluated quickly and to provide an accurate approximation. We discuss a series of approaches, tabulation methods, artificial neural networks (ANNs) and various types of polynomials, that all have been tested and applied within the context of kinetic modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, S.S., Mauß, F., Moréacz, G., Zeuch, T.: A comprehensive and compact n-heptane oxidation model derived using chemical lumping. PCCP 9, 1107–1126 (2007)

    CAS  Google Scholar 

  • Al-Khateeb, A.N., Powers, J.M., Paolucci, S., Sommese, A.J., Diller, J.A., Hauenstein, J.D., Mengers, J.D.: One-dimensional slow invariant manifolds for spatially homogenous reactive systems. J. Chem. Phys. 131, 024118 (2009)

    Google Scholar 

  • An, J., Jiang, Y.: Differences between direct relation graph and error-propagation-based reduction methods for large hydrocarbons. Procedia Eng. 62, 342–349 (2013)

    CAS  Google Scholar 

  • Anderson, J., Chang, Y.-C., Papachristodoulou, A.: Model decomposition and reduction tools for large-scale networks in systems biology. Automatica 47, 1165–1174 (2011)

    Google Scholar 

  • Androulakis, I.P.: Kinetic mechanism reduction based on an integer programming approach. AIChE J. 46, 361–371 (2000)

    CAS  Google Scholar 

  • Androulakis, I.P.: “Store and retrieve” representations of dynamic systems motivated by studies in gas phase chemical kinetics. Comput. Chem. Eng. 28, 2141–2155 (2004)

    CAS  Google Scholar 

  • Androulakis, I.P., Grenda, J.M., Bozzelli, J.W.: Time-integrated pointers for enabling the analysis of detailed reaction mechanisms. AIChE J. 50, 2956–2970 (2004)

    CAS  Google Scholar 

  • Apri, M., de Gee, M., Molenaar, J.: Complexity reduction preserving dynamical behavior of biochemical networks. J. Theor. Biol. 304, 16–26 (2012)

    CAS  Google Scholar 

  • Apri, M., de Gee, M., van Mourik, S., Molenaar, J.: Identifying optimal models to represent biochemical systems. PLoS One 9, e83664 (2014)

    Google Scholar 

  • Aris, R.: Reactions in continous mixtures. AIChE J. 35, 539–548 (1989)

    CAS  Google Scholar 

  • Aris, R., Gavalas, G.R.: On the theory of reactions in continuous mixtures. Philos. Trans. R. Soc. A260, 351–393 (1966)

    Google Scholar 

  • Astarita, G.: Lumping nonlinear kinetics: apparent overall order of reaction. AIChE J. 35, 529–532 (1989)

    CAS  Google Scholar 

  • Astarita, G., Nigam, A.: Lumping nonlinear kinetics in a CSTR. AIChE J. 35, 1927–1932 (1989)

    CAS  Google Scholar 

  • Astarita, G., Ocone, R.: Lumping nonlinear kinetics. AIChE J. 34, 1299–1309 (1986)

    Google Scholar 

  • Astarita, G., Ocone, R.: Chemical reaction engineering of complex mixtures. Chem. Eng. Sci. 47, 2135–2147 (1992)

    CAS  Google Scholar 

  • Astarita, G., Sandler, S.I. (eds.): Kinetic and Thermodynamic Lumping of Multicomponent Mixtures. Elsevier, Amsterdam (1991)

    Google Scholar 

  • Atanga, G.F.: Direct numerical simulation of turbulent flames on parallel computers. Ph.D. thesis, Otto-von-Guericke-Universitat (2012)

    Google Scholar 

  • Austin, J.: On the explicit versus family solution of the fully diurnal photochemical equations of the stratosphere. J. Geophys. Res. Atmos. 96(D7), 12941–12974 (1991)

    CAS  Google Scholar 

  • Bahlouli, K., Atikol, U., Saray, R.K., Mohammadi, V.: A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine. Energy Convers. Manage. 79, 85–96 (2014)

    CAS  Google Scholar 

  • Bailey, J.E.: Lumping analysis of reactions in continuous mixtures. Chem. Eng. J. 3, 52–71 (1972)

    CAS  Google Scholar 

  • Banerjee, I., Ierapetritou, M.G.: Development of an adaptive chemistry model considering micromixing effects. Chem. Eng. Sci. 58, 4537–4555 (2003)

    CAS  Google Scholar 

  • Banerjee, I., Ierapetritou, M.G.: An adaptive reduction scheme to model reactive flow. Combust. Flame 144, 619–633 (2006)

    CAS  Google Scholar 

  • Battin-Leclerc, F., Glaude, P.A., Warth, V., Fournet, R., Scacchi, G., Côme, G.M.: Computer tools for modelling the chemical phenomena related to combustion. Chem. Eng. Sci. 55, 2883–2893 (2000)

    CAS  Google Scholar 

  • Becker, T., Weispfenning, V.: Gröbner Bases (A Computational Approach to Communicative Algebra). Springer, New York (1993)

    Google Scholar 

  • Bekdemir, C., Somers, L.M.T., de Goey, L.P.H.: Modeling diesel engine combustion using pressure dependent Flamelet generated manifolds. Proc. Combust. Inst. 33, 2887–2894 (2011)

    CAS  Google Scholar 

  • Bell, J.B., Brown, N.J., Day, M.S., Frenklach, M., Grcar, J.F., Propp, R.M., Tonse, S.R., Wagner, A.: Scaling and efficiency of PRISM in adaptive simulations of turbulent premixed flames. Proc. Combust. Inst. 28, 107–113 (2000)

    CAS  Google Scholar 

  • Benson, S.W.: The induction period in chain reactions. J. Chem. Phys. 20, 1605–1612 (1952)

    CAS  Google Scholar 

  • Beretta, G.P., Keck, J.C., Janbozorgi, M., Metghalchi, H.: The rate-controlled constrained-equilibrium approach to far-from-local-equilibrium thermodynamics. Entropy 14, 92–130 (2012)

    CAS  Google Scholar 

  • Bhattacharjee, B., Schwer, D.A., Barton, P.I., Green, W.H.: Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms. Combust. Flame 135, 191–208 (2003)

    CAS  Google Scholar 

  • Bilgari, A., Sutherland, J.C.: A filter-independent model identification technique for turbulent combustion modeling. Combust. Flame 159, 1960–1970 (2012)

    Google Scholar 

  • Bilger, R.W.: On reduced mechanisms for methane-air combustion in non-premixed flames. Combust. Flame 80, 135–149 (1990)

    CAS  Google Scholar 

  • Blasco, J.A., Fueyo, N., Dopazo, C., Ballester, J.: Modelling the temporal evolution of a reduced combustion chemical system with an artificial neural network. Combust. Flame 113, 38–52 (1998)

    CAS  Google Scholar 

  • Blasco, J.A., Fueyo, N., Larroya, J.C., Dopazo, C., Chen, Y.J.: A single-step time-integrator of a methane–air chemical system using artificial neural networks. Comput. Chem. Eng. 23, 1127–1133 (1999)

    CAS  Google Scholar 

  • Blasco, J.A., Fueyo, N., Dopazo, C., Chen, J.-Y.: A self-organizing-map approach to chemistry representation in combustion applications. Combust. Theory Model. 4, 61–76 (2000)

    CAS  Google Scholar 

  • Blasenbrey, T., Maas, U.: ILDMs of higher hydrocarbons and the hierarchy of chemical kinetics. Proc. Combust. Inst. 28, 1623–1630 (2000)

    CAS  Google Scholar 

  • Blasenbrey, T.: Entwicklung und Implementierung automatisch reduzierter Reaktionsmechanismen für die Verbrennung von Kohlenwasserstoffen. Ph.D. thesis, Stuttgart University (2000)

    Google Scholar 

  • Blouza, A., Coquel, F., Hamel, F.: Reduction of linear kinetic systems with multiple scales. Combust. Theory Model. 4, 339–362 (2000)

    CAS  Google Scholar 

  • Blurock, E.S.: Characterizing complex reaction mechanisms using machine learning clustering techniques. Int. J. Chem. Kinet. 36, 107–118 (2004)

    CAS  Google Scholar 

  • Blurock, E.S.: Automatic characterization of ignition processes with machine learning clustering techniques. Int. J. Chem. Kinet. 38, 621–633 (2006)

    CAS  Google Scholar 

  • Blurock, E.S., Tuner, M., Mauss, F.: Phase optimized skeletal mechanisms for engine simulations. Combust. Theory Model. 14, 295–313 (2010)

    CAS  Google Scholar 

  • Bodenstein, M.: Eine Theorie der photochemischen Reaktionsgeschwindigkeiten. Z. Phys. Chem. 85, 329–397 (1913)

    Google Scholar 

  • Bodenstein, M., Lutkemeyer, H.: Die photochemische Bildung von Bromwasserstoff und die Bildungsgeschwindigkeit der Brommolekel—aus den Atomen. Z. Phys. Chem. 114, 208–236 (1924)

    CAS  Google Scholar 

  • Bogaevski, V.N., Povzner, A.: Algebraic Method in Nonlinear Perturbation Theory. Springer, New York (1991)

    Google Scholar 

  • Bongers, H., Van Oijen, J.A., De Goey, L.P.H.: Intrinsic low-dimensional manifold method extended with diffusion. Proc. Combust. Inst. 29, 1371–1378 (2002)

    CAS  Google Scholar 

  • Bongers, H., van Oijen, J.A., de Goey, L.P.H.: The Flamelet generated manifold method applied to steady planar partially premixed counterflow flames. Combust. Sci. Technol. 177, 2373–2393 (2005)

    CAS  Google Scholar 

  • Börger, I., Merkel, A., Lachmann, J., Spangenberg, H.-J., Turányi, T.: An extended kinetic model and its reduction by sensitivity analysis for the methanol/oxygen gas-phase thermolysis. Acta Chim. Hung. 129, 855–864 (1992)

    Google Scholar 

  • Borghans, J.A.M., De Boer, R.J., Segel, L.A.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)

    CAS  Google Scholar 

  • Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Model reduction of chemical reaction systems using elimination. Math. Comput. Sci. 5, 289 (2011)

    Google Scholar 

  • Bounaceur, R., Warth, V., Glaude, P.A., Battin-Leclerc, F., Scacchi, G., Come, G.M., Faravelli, T., Ranzi, E.: Chemical lumping of mechanisms generated by computer—Application to the modeling of normal-butane oxidation. J. Chim. Phys. Phys. Chim. Biol. 93, 1472–1491 (1996)

    CAS  Google Scholar 

  • Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for Experiments. An Introduction to Design, Data Analysis, and Model Building. Wiley, New York (1978)

    Google Scholar 

  • Brad, R.B., Tomlin, A.S., Fairweather, M., Griffiths, J.F.: The application of chemical reduction methods to a combustion system exhibiting complex dynamics. Proc. Combust. Inst. 31, 455–463 (2007)

    Google Scholar 

  • Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 339–339 (1925)

    Google Scholar 

  • Brochot, C., Tóth, J., Bois, F.Y.: Lumping in pharmacokinetics. J. Pharmacokinet. Pharmacodyn. 32, 719–736 (2005)

    Google Scholar 

  • Brown, N.J., Tonse, S.R.: PRISM Piecewise reusable implementation of solution mapping to improve computational economy. Abstr. Pap. Am. Chem. Soc. 228, U308–U308 (2004)

    Google Scholar 

  • Büki, A., Perger, T., Turányi, T., Maas, U.: Repro-modelling based generation of intrinsic low-dimensional manifolds. J. Math. Chem. 31, 345–362 (2002)

    Google Scholar 

  • Bykov, V., Gol’dshtein, V.: Fast and slow invariant manifolds in chemical kinetics. Comput. Math. Appl. 65, 1502–1515 (2013)

    Google Scholar 

  • Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model. 11, 839–862 (2007a)

    CAS  Google Scholar 

  • Bykov, V., Maas, U.: Extension of the ILDM method to the domain of slow chemistry. Proc. Combust. Inst. 31, 465–472 (2007b)

    Google Scholar 

  • Bykov, V., Maas, U.: Investigation of the hierarchical structure of kinetic models in ignition problems. Z. Phys. Chem. 223, 461–479 (2009a)

    CAS  Google Scholar 

  • Bykov, V., Maas, U.: Problem adapted reduced models based on reaction-diffusion manifolds (REDIMs). Proc. Combust. Inst. 32, 561–568 (2009b)

    CAS  Google Scholar 

  • Bykov, V., Goldfarb, I., Gol’dshtein, V., Sazhin, S., Sazhina, E.: System decomposition technique for spray modelling in CFD codes. Comput. Fluids 36, 601–610 (2007)

    CAS  Google Scholar 

  • Bykov, V., Griffiths, J.F., Piazzesi, R., Sazhin, S.S., Sazhina, E.M.: The application of the global quasi-linearisation technique to the analysis of the cyclohexane/air mixture autoignition. Appl. Math. Comput. 219, 7338–7347 (2013)

    Google Scholar 

  • Cannon, S.M., Brewster, B.S., Smoot, L.D.: PDF modeling of lean premixed combustion using in situ tabulated chemistry. Combust. Flame 119, 233–252 (1999)

    CAS  Google Scholar 

  • Carslaw, N., Jacobs, P.J., Pilling, M.J.: Modeling OH, HO2, and RO2 radicals in the marine boundary layer 2. Mechanism reduction and uncertainty analysis. J. Geophys. Res. D 104, 30257–30273 (1999)

    CAS  Google Scholar 

  • Chapman, D.L., Underhill, L.K.: The interaction of chlorine and hydrogen. The influence of mass. J. Chem. Soc. Trans. 103, 496–508 (1913)

    CAS  Google Scholar 

  • Chatzopoulos, A.K., Rigopoulos, S.: A chemistry tabulation approach via rate-controlled constrained equilibrium (RCCE) and artificial neural networks (ANNs), with application to turbulent non-premixed CH4/H2/N2 flames. Proc. Combust. Inst. 34, 1465–1473 (2013)

    CAS  Google Scholar 

  • Chen, J.Y.: A general procedure for constructing reduced reaction-mechanisms with given independent relations. Combust. Sci. Technol. 57, 89–94 (1988)

    CAS  Google Scholar 

  • Chen, J.Y.: Analysis of in situ adaptive tabulation performance for combustion chemistry and improvement with a modified search algorithm. Combust. Sci. Technol. 176, 1153–1169 (2004)

    CAS  Google Scholar 

  • Chen, J.Y., Tham, Y.F.: Speedy solution of quasi-steady-state species by combination of fixed-point iteration and matrix inversion. Combust. Flame 153, 634–646 (2008)

    CAS  Google Scholar 

  • Chen, J.Y., Chang, W.C., Koszykowski, M.: Numerical simulation and scaling of NOx emissions from turbulent hydrogen jet flames with various amounts of helium dilution. Combust. Sci. Technol. 111, 505–529 (1995)

    Google Scholar 

  • Chen, J.Y., Blasco, J.A., Fueyo, N., Dopazo, C.: An economical strategy for storage of chemical kinetics: fitting in situ adaptive tabulation with artificial neural networks. Proc. Combust. Inst. 28, 115–121 (2000)

    CAS  Google Scholar 

  • Chiavazzo, E., Gorban, A.N., Karlin, I.V.: Comparison of invariant manifolds for model reduction in chemical kinetics. Commun. Comput. Phys. 2, 964–992 (2007)

    Google Scholar 

  • Chiavazzo, E., Karlin, I.V., Frouzakis, C.E., Boulouchos, K.: Method of invariant grid for model reduction of hydrogen combustion. Proc. Combust. Inst. 32, 519–526 (2009)

    CAS  Google Scholar 

  • Choi, Y., Chen, J.Y.: Fast prediction of start-of-cornbustion in HCCI with combined artificial neural networks and ignition delay model. Proc. Combust. Inst. 30, 2711–2718 (2005)

    Google Scholar 

  • Chou, M.Y., Ho, T.C.: Continuum theory for lumping nonlinear reactions. AIChE J. 34, 1519–1527 (1988)

    CAS  Google Scholar 

  • Christo, F.C., Masri, A.R., Nebot, E.M., Turányi, T.: Utilising artificial neural network and repro-modelling in turbulent combustion. Proc. IEEE Int. Conf. Neural Netw. 1, 911–916 (1995)

    Google Scholar 

  • Christo, F.C., Masri, A.R., Nebot, E.M.: Artificial neural network implementation of chemistry with pdf Simulation of H2/CO2 flames. Combust. Flame 106, 406–427 (1996a)

    CAS  Google Scholar 

  • Christo, F.C., Masri, A.R., Nebot, E.M., Pope, S.B.: An integrated PDF/neural network approach for simulating turbulent reacting systems. Proc. Combust. Inst. 26, 43–48 (1996b)

    Google Scholar 

  • Chu, Y., Serpas, M., Hahn, J.: State-preserving nonlinear model reduction procedure. Chem. Eng. Sci. 66, 3907–3913 (2011)

    CAS  Google Scholar 

  • Cicarelli, P., Astarita, G., Gallifuoco, A.: Continuous kinetic lumping of catalytic cracking processes. AIChE J. 38, 1038–1044 (1992)

    CAS  Google Scholar 

  • Ciliberto, A., Capuani, F., Tyson, J.J.: Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol. 3, e45 (2007)

    Google Scholar 

  • Clifford, L.J., Milne, A.M., Turányi, T., Boulton, D.: An induction parameter model for shock-induced hydrogen combustion simulations. Combust. Flame 113, 106–118 (1998)

    CAS  Google Scholar 

  • Colin, O., Pires da Cruz, A., Jay, S.: Detailed chemistry-based auto-ignition model including low temperature phenomena applied to 3-D engine calculations. Proc. Combust. Inst. 30, 2649–2656 (2005)

    Google Scholar 

  • Contino, F., Jeanmart, H., Lucchini, T., D’Errico, G.: Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: an effective method for solving combustion in engine simulations. Proc. Combust. Inst. 33, 3057–3064 (2011)

    CAS  Google Scholar 

  • Coussement, A., Gicquel, O., Parente, A.: Kernel density weighted principal component analysis of combustion processes. Combust. Flame 159, 2844–2855 (2012)

    CAS  Google Scholar 

  • Coussement, A., Gicquel, O., Parente, A.: MG-local-PCA method for reduced order combustion modeling. Proc. Combust. Inst. 34, 1117–1123 (2013)

    CAS  Google Scholar 

  • Crutzen, P.J.: Ozone production rates in an oxygen–hydrogen–nitrogen oxide atmosphere. J. Geophys. Res. 76, 7311–7327 (1971)

    CAS  Google Scholar 

  • Cunha Jr., A., da Silva, L.F.F.: Assessment of a transient homogeneous reactor through in situ adaptive tabulation. J Braz. Soc. Mech. Sci. Eng. 36, 377–391 (2014)

    Google Scholar 

  • Danby, S.J., Echekki, T.: Proper orthogonal decomposition analysis of autoignition simulation data of nonhomogeneous hydrogen-air mixtures. Combust. Flame 144, 126–138 (2006)

    CAS  Google Scholar 

  • Dano, S., Madsen, M.F., Schmidt, H., Cedersund, G.: Reduction of a biochemical model with preservation of its basic dynamic properties. FEBS J. 273, 4862–4877 (2006)

    Google Scholar 

  • Davis, M.J., Skodje, R.T.: Geometric investigation of low-dimensional manifolds in systems approaching equilibrium. J. Chem. Phys. 111, 859–874 (1999)

    CAS  Google Scholar 

  • Davis, M.J., Tomlin, A.S.: Spatial dynamics of steady flames 1. Phase space structure and the dynamics of individual trajectories. J. Phys. Chem. A 112, 7768–7783 (2008a)

    CAS  Google Scholar 

  • Davis, M.J., Tomlin, A.S.: Spatial dynamics of steady flames 2. Low-dimensional manifolds and the role of transport processes. J. Phys. Chem. A 112, 7784–7805 (2008b)

    CAS  Google Scholar 

  • Davis, S.G., Mhadeshwar, A.B., Vlachos, D.G., Wang, H.: A new approach to response surface development for detailed gas-phase and surface reaction kinetic model optimization. Int. J. Chem. Kinet. 36, 94–106 (2004)

    CAS  Google Scholar 

  • de Goey, L.P.H., van Oijen, J.A., Bongers, H., Groot, G.R.A.: New flamelet based reduction methods: the bridge between chemical reduction techniques and flamelet methods. In: Proceedings of ECM (2003)

    Google Scholar 

  • Djouad, R., Sportisse, B.: Partitioning techniques for reduction in chemical kinetics. APLA: an Automatic Partitioning and Lumping Algorithm. Appl. Numeric. Math. 43, 383–398 (2002)

    Google Scholar 

  • Djouad, R., Sportisse, B., Audiffren, N.: Reduction of multiphase atmospheric chemistry. J. Atm. Chem. 46, 131–157 (2003)

    CAS  Google Scholar 

  • Dokoumetzidis, A., Aarons, L.: A method for robust model order reduction in pharmacokinetics. J. Pharmacokinet. Pharmacodyn. 36, 613–628 (2009a)

    CAS  Google Scholar 

  • Dokoumetzidis, A., Aarons, L.: Proper lumping in systems biology models. IET Syst. Biol. 3, 40–51 (2009b)

    CAS  Google Scholar 

  • Douglass, A.R., Kawa, S.R.: Contrast between 1992 and 1997 high-latitude spring halogen occultation experiment observations of lower stratospheric HCl. J. Geophys. Res. Atmos. 104(D15), 18739–18754 (1999)

    CAS  Google Scholar 

  • Dunker, A.M.: The reduction and parameterization of chemical mechanisms for inclusion in atmospheric reaction-transport models. Atmos. Environ. 20, 479–486 (1986)

    CAS  Google Scholar 

  • Dyer, R.S., Korakianitis, T.: Pre-integrated response map for inviscid propane-air detonation. Combust. Sci. Technol. 179, 1327–1347 (2007)

    CAS  Google Scholar 

  • Edelson, D.: On the solution of differential equations arising in chemical kinetics. J. Comput. Phys. 11, 455–457 (1973)

    CAS  Google Scholar 

  • Edwards, K., Edgar, T.F., Manousiouthakis, V.I.: Kinetic model reduction using genetic algorithms. Comput. Chem. Eng. 22, 239–246 (1998)

    CAS  Google Scholar 

  • Edwards, K., Edgar, T.F., Manousiouthakis, V.I.: Reaction mechanism simplification using mixed-integer nonlinear programming. Comput. Chem. Eng. 24, 67–79 (2000)

    CAS  Google Scholar 

  • Eggels, R.L.G.M., de Goey, L.P.H.: Mathematically reduced reaction mechanisms applied to adiabatic flat hydrogen/air flames. Combust. Flame 100, 559–570 (1995)

    CAS  Google Scholar 

  • Elliott, S., Turco, R.P., Jacobson, M.Z.: Tests on combined projection forward differencing integration for stiff photochemical family systems at long-time step. Comput. Chem. 17, 91–102 (1993)

    CAS  Google Scholar 

  • Elliott, S., Shen, M., Kao, C.Y.J., Turco, R.P., Jacobson, M.Z.: A streamlined family photochemistry module reproduces major nonlinearities in the global tropospheric ozone system. Comput. Chem. 20, 235–259 (1996)

    CAS  Google Scholar 

  • Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson, C.W.: Genetic algorithms for optimisation of chemical kinetics reaction mechanisms. Prog. Energy Combust. Sci. 30, 297–328 (2004)

    CAS  Google Scholar 

  • Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson, C.W.: Reaction mechanism reduction and optimization using genetic algorithms. Ind. Eng. Chem. Res. 44, 658–667 (2005)

    CAS  Google Scholar 

  • Elliott, L., Ingham, D.B., Kyne, A.G., Merab, N.S., Pourkashanian, M., Whittaker, S.: Reaction mechanism reduction and optimisation for modelling aviation fuel oxidation using standard and hybrid genetic algorithms. Comput. Chem. Eng. 30, 889–900 (2006)

    CAS  Google Scholar 

  • Enjalbert, N., Domingo, P., Vervisch, L.: Mixing time-history effects in large Eddy simulation of non-premixed turbulent flames: flow-controlled chemistry tabulation. Combust. Flame 159, 336–352 (2012)

    CAS  Google Scholar 

  • Farkas, G.: Kinetic lumping schemes. Chem. Eng. Sci. 54, 3909–3915 (1999)

    CAS  Google Scholar 

  • Farrow, L.A., Edelson, D.: Steady-state approximation—Fact or fiction? Int. J. Chem. Kinet. 6, 787–800 (1974)

    CAS  Google Scholar 

  • Feeley, R., Seiler, P., Packard, A., Frenklach, M.: Consistency of a reaction dataset. J. Phys. Chem. A 108, 9573–9583 (2004)

    CAS  Google Scholar 

  • Feeley, R., Frenklach, M., Onsum, M., Russi, T., Arkin, A., Packard, A.: Model discrimination using data collaboration. J. Phys. Chem. A 110, 6803–6813 (2006)

    CAS  Google Scholar 

  • Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140, 147–160 (2005)

    CAS  Google Scholar 

  • Fischer, M., Riedel, U.: Combustion chemistry and parameter estimation. In: Bock, H.G., Carraro, T., Jäger, W., Körkel, S., Rannacher, R., Schlöder, J.P. (eds.) Model Based Parameter Estimation. Theory and Applications, vol. 4, pp. 207–226. Springer, Berlin (2013)

    Google Scholar 

  • Fish, D.J.: The automatic generation of reduced mechanisms for tropospheric chemistry modelling. Atmos. Environ. 34, 1563–1574 (2000)

    CAS  Google Scholar 

  • Flach, E.H., Schnell, S.: Use and abuse of the quasi-steady-state approximation. IEE Proc. Syst. Biol. 153, 187–191 (2006)

    CAS  Google Scholar 

  • Flemming, F., Sadiki, A., Janicka, J.: LES using artificial neural networks for chemistry representation. Prog. Comput. Fluid Dynamics 5, 375–385 (2000)

    Google Scholar 

  • Fournet, R., Warth, V., Glaude, P.A., Battin-Leclerc, F., Scacchi, G., Côme, G.M.: Automatic reduction of detailed mechanisms of combustion of alkanes by chemical lumping. Int. J. Chem. Kinet. 32, 36–51 (2000)

    CAS  Google Scholar 

  • Frank-Kamenetskii, D.A.: Условия примениности метода Боденштейна в химической кинетике (Conditions for the applicability of the Bodenstein method in chemical kinetics) Ж. Физ. Хим. 14, 695–700 (1940)

    CAS  Google Scholar 

  • Fraser, S.J.: The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys. 88, 4732–4738 (1988)

    CAS  Google Scholar 

  • Fraser, S.J., Roussel, M.R.: Phase-plane geometries in enzyme-kinetics. Canadian Journal of Chemistry-Revue Canadienne De Chimie 72, 800–812 (1994)

    CAS  Google Scholar 

  • Frenklach, M.: Computer modeling of infinite reaction sequences—a chemical lumping. Chem. Eng. Sci. 40, 1843–1849 (1985)

    CAS  Google Scholar 

  • Frenklach, M.: Reduction of chemical reaction models. In: Oran, E.S., Boris, J.P. (eds.) Numerical Approaches to Combustion Modeling, pp. 129–154. American Institute of Aeronautics and Astronautics, Inc., Washington, DC (1991)

    Google Scholar 

  • Frenklach, M., Harris, S.J.: Aerosol dynamics modeling using the method of moments. J. Colloid Interface Sci. 118, 252–261 (1987)

    CAS  Google Scholar 

  • Frenklach, M., Kailasanath, K., Oran, E.S.: Systematic development of reduced mechanisms for dynamic modeling. Prog. Astronaut. Aeronautics 105, 365–376 (1986)

    CAS  Google Scholar 

  • Frenklach, M., Wang, H., Rabinowitz, M.J.: Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane. Prog. Energy Combust. Sci. 18, 47–73 (1992)

    Google Scholar 

  • Frenklach, M., Packard, A., Seiler, P., Feeley, R.: Collaborative data processing in developing predictive models of complex reaction systems. Int. J. Chem. Kinet. 36, 57–66 (2004)

    CAS  Google Scholar 

  • Frouzakis, C.E., Boulouchos, K.: Analysis and reduction of the CH4-air mechanism at lean conditions. Combust. Sci. Technol. 159, 281–303 (2000)

    CAS  Google Scholar 

  • Frouzakis, C.E., Kevrekidis, Y.G., Lee, J., Boulouchos, K., Alonso, A.A.: Proper orthogonal decomposition of direct numerical simulation data: data reduction and observer construction. Proc. Combus. Inst. 28, 75–81 (2000)

    CAS  Google Scholar 

  • García-Ybarra, P.L., Treviño, C.: Asymptotic analysis of the boundary layer H2 ignition by a hot flat plate with thermal diffusion. Combust. Flame 96, 293–303 (1994)

    Google Scholar 

  • Gear, C.W.: The automatic integration of ordinary differential equations. Numer. Mathematics 14, 176–190 (1971)

    Google Scholar 

  • Gear, C.W., Petzold, L.R.: ODE methods for the solution of differential algebraic systems. SIAM J. Numer. Anal. 21, 716–728 (1984)

    Google Scholar 

  • Georgakis, C., Aris, R.: Diffusion, reaction and the pseudo-steady-state hypothesis. Math. Biochem 25, 237–258 (1975)

    Google Scholar 

  • Gery, M.W., Whitten, G.Z., Killus, J.P., Dodge, M.C.: A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. D94, 12925–12956 (1989)

    Google Scholar 

  • Gicquel, O., Thévenien, D., Hilka, M., Darabiha, N.: Direct numerical simulation of turbulent premixed flames using intrinsic low-dimensional manifolds. Combust. Theory Model. 3, 479–502 (1999)

    CAS  Google Scholar 

  • Gicquel, O., Darabiha, N., Thevenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)

    CAS  Google Scholar 

  • Gicquel, O., Ribert, O., Darabiha, N., Veynante, D.: Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames. Combust. Flame 146, 649–664 (2006)

    Google Scholar 

  • Godel, G., Domingo, P., Vervisch, L.: Tabulation of NOx chemistry for Large-Eddy simulation of non-premixed turbulent flames. Proc. Combust. Inst. 32, 1555–1561 (2009)

    CAS  Google Scholar 

  • Gokulakrishnan, P., Lawrence, A.D., McLellan, P.J., Grandmaison, E.W.: A functional-PCA approach for analyzing and reducing complex chemical mechanisms. Comput. Chem. Eng. 30, 1093–1101 (2006)

    CAS  Google Scholar 

  • Gokulakrishnan, P., Joklik, R., Viehe, D., Trettel, A., Gonzalez-Juez, E., Klassen, M.: Optimization of reduced kinetic models for reactive flow simulations. J. Eng. Gas Turbines Power 136, 011503 (2013)

    Google Scholar 

  • Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. John Hopkins, Baltimore (1983)

    Google Scholar 

  • Gomez, M.C., Tchijov, V.: The FEOM technique applied to a three-dimensional model of diffusion/advection of pollutants. Environ. Model. Software 25, 602–606 (2010)

    Google Scholar 

  • Gorban, A.N., Karlin, I.V.: Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58, 4751–4768 (2003)

    CAS  Google Scholar 

  • Gorban, A., Karlin, I., Zinovyev, A.: Invariant grids: method of complexity reduction in reaction networks. ComPlexUs 2, 110–127 (2004a)

    CAS  Google Scholar 

  • Gorban, A.N., Karlin, I.V., Zinovyev, A.Y.: Constructive methods of invariant manifolds for kinetic problems. Phys. Rep. 396, 197–403 (2004b)

    CAS  Google Scholar 

  • Gorban, A.N., Karlin, I.V., Zinovyev, A.Y.: Invariant grids for reaction kinetics. Physica A 333, 106–154 (2004c)

    CAS  Google Scholar 

  • Gou, X., Chen, Z., Sun, W., Ju, Y.: A dynamic adaptive chemistry scheme with error control for combustion modeling with a large detailed mechanism. Combust. Flame 160, 225–231 (2013)

    CAS  Google Scholar 

  • Goussis, D.A.: Quasi steady state and partial equilibrium approximations: their relation and their validity. Combust. Theory Model. 16, 869–926 (2012)

    Google Scholar 

  • Goussis, D.A., Lam, S.H.: A study of homogeneous methanol oxidation kinetics using CSP. Proc. Combust. Inst. 24, 113–120 (1992)

    Google Scholar 

  • Goussis, D.A., Maas, U.: Model reduction for combustion chemistry. In: Echekki, T., Mastorakos, E. (eds.) Turbulent Combustion Modeling, pp. 193–220. Springer, New York (2011)

    Google Scholar 

  • Goussis, D.A., Najm, H.N.: Model reduction and physical understanding of slowly oscillating processes: the circadian cycle. SIAM Multiscale Model. Simul. 5, 1297–1332 (2006)

    Google Scholar 

  • Goussis, D.A., Skevis, G.: Nitrogen chemistry controlling steps in methane-air premixed flames. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics, pp. 650–653. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Goussis, D.A., Valorani, M.: An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems. J. Comput. Phys. 214, 316–346 (2006)

    Google Scholar 

  • Granata, S., Faravelli, T., Ranzi, E.: A wide range kinetic modeling study of the pyrolysis and combustion of naphthenes. Combust. Flame 132, 533–544 (2003)

    CAS  Google Scholar 

  • Griffiths, J.F.: Reduced kinetic-models and their application to practical combustion systems. Prog. Energy Combust. Sci. 21, 25–107 (1995)

    CAS  Google Scholar 

  • Hannemann-Tamás, R., Gábor, A., Szederkényi, G., Hangos, K.M.: Model complexity reduction of chemical reaction networks using mixed-integer quadratic programming. Comput. Math. Appl. 65, 1575–1595 (2014)

    Google Scholar 

  • Harris, S.D., Elliott, L., Ingham, D.B., Pourkashanian, M., Wilson, C.W.: The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms. Comput. Methods Appl. Mech. Eng. 190, 1065–1090 (2000)

    Google Scholar 

  • Harstad, K., Bellan, J.: A model of reduced oxidation kinetics using constituents and species: Iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane. Combust. Flame 157, 2184–2197 (2010a)

    CAS  Google Scholar 

  • Harstad, K.G., Bellan, J.: A model of reduced kinetics for alkane oxidation using constituents and species: proof of concept for n-heptane. Combust. Flame 157, 1594–1609 (2010b)

    CAS  Google Scholar 

  • He, K., Ierapetritou, M.G., Androulakis, I.P.: A graph-based approach to developing adaptive representations of complex reaction mechanisms. Combust. Flame 155, 585–604 (2008)

    CAS  Google Scholar 

  • He, K., Androulakis, I.P., Ierapetritou, M.G.: On-the-fly reduction of kinetic mechanisms using element flux analysis. Chem. Eng. Sci. 65, 1173–1184 (2010)

    CAS  Google Scholar 

  • Heard, A.C., Pilling, M.J., Tomlin, A.S.: Mechanism reduction techniques applied to tropospheric chemistry. Atmos. Environ. 32, 1059–1073 (1998)

    CAS  Google Scholar 

  • Heineken, F.G., Tsuchiya, H.M., Aris, R.: On the mathematical status of the pseudo-steady-state hypothesis of biochemical kinetics. Math. Biosci. 1, 95–113 (1967)

    Google Scholar 

  • Hernández, J.J., Ballesteros, R., Sanz-Argent, J.: Reduction of kinetic mechanisms for fuel oxidation through genetic algorithms. Math. Comput. Model. 52, 1185–1193 (2010)

    Google Scholar 

  • Hiremath, V., Pope, S.B.: A study of the rate-controlled constrained-equilibrium dimension reduction method and its different implementations. Combust. Theory Model. 17, 260–293 (2013)

    CAS  Google Scholar 

  • Hiremath, V., Ren, Z.Y., Pope, S.B.: A greedy algorithm for species selection in dimension reduction of combustion chemistry. Combust. Theory Model. 14, 619–652 (2010)

    CAS  Google Scholar 

  • Hiremath, V., Ren, Z.Y., Pope, S.B.: Combined dimension reduction and tabulation strategy using ISAT-RCCE-GALI for the efficient implementation of combustion chemistry. Combust. Flame 158, 2113–2127 (2011)

    CAS  Google Scholar 

  • Ho, T.C., Aris, R.: On apparent second-order kinetics. AIChE J. 33, 1050–1051 (1987)

    Google Scholar 

  • Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI—a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006)

    CAS  Google Scholar 

  • Hu, D., Braun-Unkhoff, M., Frank, P.: Modeling study on soot formation at high pressures. Combust. Sci. Technol. 149, 79–94 (1999)

    CAS  Google Scholar 

  • Huang, H., Fairweather, M., Griffiths, J.F., Tomlin, A.S., Brad, R.B.: A systematic lumping approach for the reduction of comprehensive kinetic models. Proc. Combust. Inst. 30, 1309–1316 (2005)

    Google Scholar 

  • Hughes, K.J., Fairweather, M., Griffiths, J.F., Porter, R., Tomlin, A.S.: The application of the QSSA via reaction lumping for the reduction of complex hydrocarbon oxidation mechanisms. Proc. Combust. Inst. 32, 543–551 (2009)

    CAS  Google Scholar 

  • Ihme, M., Marsden, A.L., Pitsch, H.: Generation of optimal artificial neural networks using a pattern search algorithm: application to approximation of chemical systems. Neural Comput. 20, 573–601 (2008)

    Google Scholar 

  • Ihme, M., Schmitt, C., Pitsch, H.: Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame. Proc. Combust. Inst. 32, 1527–1535 (2009)

    CAS  Google Scholar 

  • Imbert, B., Lafosse, F., Catoire, L., Paillard, C.-É., Khasainov, B.: Formulation reproducing the ignition delays simulated by a detailed mechanism: application to n-heptane combustion. Combust. Flame 155, 380–408 (2008)

    CAS  Google Scholar 

  • Ingber, L., Rosen, B.: Genetic algorithms and very fast simulated re-annealing—a comparison. Math. Comput. Model. 16, 87–100 (1992)

    Google Scholar 

  • Ishmurzin, A., Schramm, B., Lebiedz, D., Warnatz, J.: Reduction of detailed reaction mechanisms for large hydrocarbons combustion by the ILDM method. In: Proceedings of ECM (2003)

    Google Scholar 

  • Ismail, H.M., Ng, H.K., Gan, S., Lucchini, T., Angelo Onorati, A.: Development of a reduced biodiesel combustion kinetics mechanism for CFD modelling of a light-duty diesel engine. Fuel 106, 388–400 (2013)

    Google Scholar 

  • Jacobson, M.Z.: Fundamentals of Atmospheric Modeling, 2nd edn. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • James, S., Anand, M.S., Razdan, M.K., Pope, S.B.: In situ detailed chemistry calculations in combustor flow analyses. J. Eng. Gas. Turbines Power-Trans. ASME 123, 747–756 (2001)

    CAS  Google Scholar 

  • Jay, S., Colin, O.: A variable volume approach of tabulated detailed chemistry and its applications to multidimensional engine simulations. Proc. Combust. Inst. 33, 3065–3072 (2011)

    CAS  Google Scholar 

  • Jay, L.O., Sandu, A., Potra, F.A., Carmichael, G.R.: Improved quasi-steady-state-approximation methods for atmospheric chemistry integration. SIAM J. Sci. Comput. 18, 182–202 (1997)

    Google Scholar 

  • Jenkin, M.E., Watson, L.A., Utembe, S.R., Shallcross, D.E.: A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 1: Gas phase mechanism development. Atmos. Environ. 42, 7185–7195 (2008)

    CAS  Google Scholar 

  • Jiang, Y., Qiu, R.: Reduction of large kinetic mechanisms of hydrocarbon fuels with directed relation graph. Acta Physico-Chimica Sinica 25, 1019–1025 (2009)

    CAS  Google Scholar 

  • Jones, W.P., Rigopoulos, S.: Rate-controlled constrained equilibrium: formulation and application to nonpremixed laminar flames. Combust. Flame 142, 223–234 (2005a)

    CAS  Google Scholar 

  • Jones, W.P., Rigopoulos, S.: Reduction of comprehensive chemistry via constraint potentials. Proc. Combust. Inst. 30, 1325–1331 (2005b)

    Google Scholar 

  • Jones, W.P., Rigopoulos, S.: Reduced chemistry for hydrogen and methanol premixed flames via RCCE. Combust. Theory Model. 11, 755–780 (2007)

    CAS  Google Scholar 

  • Kalachev, L.V., Field, R.J.: Reduction of a model describing ozone oscillations in the troposphere: example of an algorithmic approach to model reduction in atmospheric chemistry. J. Atm. Chem. 39, 65–93 (2001)

    CAS  Google Scholar 

  • Katare, S., Bhan, A., Caruthers, J.M., Delgass, W.N., Venkatasubramanian, V.: A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Comput. Chem. Eng. 28, 2569–2581 (2004)

    CAS  Google Scholar 

  • Kazakov, A., Frenklach, M.: Dynamic modeling of soot particle coagulation and aggregation: implementation with the method of moments and application to high-pressure laminar premixed flames. Combust. Flame 114, 484–501 (1998)

    CAS  Google Scholar 

  • Keck, J.C.: Rate-controlled constrained-equilibrium theory of chemical-reactions in complex-systems. Prog. Energy Combust. Sci. 16, 125–154 (1990)

    CAS  Google Scholar 

  • Keck, J.C., Gillespie, D.: Rate-controlled partial-equilibrium method for treating reacting gas-mixtures. Combust. Flame 17, 237–248 (1971)

    CAS  Google Scholar 

  • Kelley, A.P., Liu, W., Xin, Y.X., Smallbone, A.J., Law, C.K.: Laminar flame speeds, non-premixed stagnation ignition, and reduced mechanisms in the oxidation of iso-octane. Proc. Combust. Inst. 33, 501–508 (2011)

    CAS  Google Scholar 

  • KINALC: CHEMKIN based program for KInetic aNALysis. http://garfield.chem.elte.hu/Combustion/kinalc.htm.

  • Kirchner, F.: The chemical mechanism generation programme CHEMATA–Part 1: The programme and first applications. Atmos. Environ. 39, 1143–1159 (2005)

    CAS  Google Scholar 

  • Kirkpatrick, S.: Optimization by simulated annealing. Science 220, 671–681 (1983)

    CAS  Google Scholar 

  • Klonowski, W.: Simplifying principles for chemical and enzyme reaction kinetics. Biophys. Chem. 18, 73–87 (1983)

    CAS  Google Scholar 

  • König, K., Maas, U.: On-demand generation of reduced mechanisms based on hierarchically extended intrinsic low-dimensional manifolds in generalized coordinates. Proc. Combust. Inst. 32, 553–560 (2009)

    Google Scholar 

  • Kooshkbaghi, M., Frouzakis, C.E., Boulouchos, K., Karlin, I.V.: Entropy production analysis for mechanism reduction. Combust. Flame 161, 1507–1515 (2014)

    CAS  Google Scholar 

  • Kourdis, P.D., Bellan, J.: Heavy-alkane oxidation kinetic-mechanism reduction using dominant dynamic variables, self similarity and chemistry tabulation. Combust. Flame 161, 1196–1223 (2014)

    CAS  Google Scholar 

  • Kourdis, P.D., Goussis, D.A.: Glycolysis in saccharomyces cerevisiae: algorithmic exploration of robustness and origin of oscillations. Math. Biosci. 243, 190–214 (2013)

    CAS  Google Scholar 

  • Kumar, A., Mazumder, S.: Adaptation and application of the in situ Adaptive Tabulation (ISAT) procedure to reacting flow calculations with complex surface chemistry. Comput. Chem. Eng. 35, 1317–1327 (2011)

    CAS  Google Scholar 

  • Lamouroux, J., Ihme, M., Fiorina, B., Gicquel, O.: Tabulated chemistry approach for diluted combustion regimes with internal recirculation and heat losses. Combust. Flame 161, 2120–2136 (2014)

    CAS  Google Scholar 

  • Law, C.K.: Combustion at a crossroads: status and prospects. Proc. Combust Inst. 31, 1–29 (2007)

    Google Scholar 

  • Law, C.K., Sung, C.J., Wang, H., Lu, T.F.: Development of comprehensive detailed and reduced reaction mechanisms for combustion modeling. AIAA J. 41, 1629–1646 (2003)

    CAS  Google Scholar 

  • Laxminarasimhan, C.S., Verma, R.P., Ramachandran, P.A.: Continuous lumping model for simulation of hydrocracking. AIChE J. 42, 2645–2653 (1996)

    CAS  Google Scholar 

  • Lebiedz, D.: Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics. J. Chem. Phys. 120, 6890–6897 (2004)

    CAS  Google Scholar 

  • Lee, J.C., Najm, H.N., Lefantzi, S., Ray, J., Frenklach, M., Valorani, M., Goussis, D.: On chain branching and its role in homogeneous ignition and premixed flame propagation. In: Bathe, K. (ed.) Computational Fluid and Solid Mechanics, pp. 717–720. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Lee, J.C., Najm, H.N., Lefantzi, S., Ray, J., Frenklach, M., Valorani, M., Goussis, D.: A CSP and tabulation-based adaptive chemistry model. Combust. Theory Model. 11, 73–102 (2007)

    CAS  Google Scholar 

  • Li, B., Li, B.: Quasi-steady-state laws in reversible model of enzyme kinetics. J. Math. Chem. 51, 2668–2686 (2013)

    CAS  Google Scholar 

  • Li, G., Rabitz, H.: A general analysis of exact lumping in chemical kinetics. Chem. Eng. Sci. 44, 1413–1430 (1989)

    CAS  Google Scholar 

  • Li, G., Rabitz, H.: Determination of constrained lumping schemes for nonisothermal first-order reaction systems. Chem. Eng. Sci. 46, 583–596 (1991)

    CAS  Google Scholar 

  • Li, G.Y., Rabitz, H.: A lumped model for H2/O2 oxidation in the oscillatory regime. J. Chem. Phys. 102, 7006–7016 (1995)

    CAS  Google Scholar 

  • Li, G., Rabitz, H.: A special singular perturbation methods for kinetic model reduction: with application to an H2/O2 oxidation model. J. Chem. Phys. 105, 4065–4075 (1996a)

    CAS  Google Scholar 

  • Li, G.Y., Rabitz, H.: Combined symbolic and numerical approach to constrained nonlinear lumping - With application to an H2/O2 oxidation model. Chem. Eng. Sci. 51, 4801–4816 (1996b)

    CAS  Google Scholar 

  • Li, G., Rabitz, H.: Reduced kinetic equations of a CO/H2/air oxidation model by a special perturbation method. Chem. Eng. Sci. 52, 4317–4327 (1997)

    CAS  Google Scholar 

  • Li, G., Tomlin, A.S., Rabitz, H., Tóth, J.: Determination of approximate lumping schemes by a singular perturbation method. J. Chem. Phys. 99, 3562–3574 (1993)

    CAS  Google Scholar 

  • Li, G., Rabitz, H., Tóth, J.: A general analysis of exact nonlinear lumping in chemical kinetics. Chem. Eng. Sci. 49, 343–361 (1994a)

    Google Scholar 

  • Li, G., Tomlin, A.S., Rabitz, H., Tóth, J.: A general analysis of approximate nonlinear lumping in chemical kinetics. I. Unconstrained lumping. J. Chem. Phys. 101, 1172–1187 (1994b)

    CAS  Google Scholar 

  • Li, G., Tomlin, A.S., Rabitz, H., Tóth, J.: A general analysis of approximate nonlinear lumping in chemical kinetics. II. Constrained lumping. J. Chem. Phys. 101, 1188–1201 (1994c)

    Google Scholar 

  • Li, G., Wang, S.-W., Rabitz, H.: Practical approaches to construct RS-HDMR component functions. J. Phys. Chem. A 106, 8721–8733 (2002)

    CAS  Google Scholar 

  • Li, B., Shen, Y., Li, B.: Quasi-steady state laws in enzyme kinetics. J. Phys. Chem. A 112, 2311–2321 (2008a)

    CAS  Google Scholar 

  • Li, G.Y., Rabitz, H., Hu, J.S., Chen, Z., Ju, Y.: Regularized random-sampling high dimensional model representation (RS-HDMR). J. Math. Chem. 43, 1207–1232 (2008b)

    Google Scholar 

  • Liang, L., Stevens, J.G., Farrell, J.T.: A dynamic adaptive chemistry scheme for reactive flow computations. Proc. Combust. Inst. 32, 527–534 (2009a)

    Google Scholar 

  • Liang, L., Stevens, J.G., Raman, S., Farrell, J.T.: The use of dynamic adaptive chemistry in combustion simulation of gasoline surrogate fuels. Combust. Flame 156, 1493–1502 (2009b)

    CAS  Google Scholar 

  • Liao, J.C., Lightfoot, E.N.: Lumping analysis of biochemical reaction systems with time scale separation. Biotechnol. Bioeng. 31, 869–879 (1988)

    CAS  Google Scholar 

  • Libby, P.A., Bray, K.N.C.: Implications of the laminar flamelet model in premixed turbulent combustion. Combust. Flame 39, 33–41 (1980)

    CAS  Google Scholar 

  • Liew, S.K., Bray, K.N.C., Moss, J.B.: A flamelet model of turbulent non-premixed combustion. Combust. Sci. Technol. 27, 69–73 (1981)

    CAS  Google Scholar 

  • Liu, B.J.D., Pope, S.B.: The performance of in situ adaptive tabulation in computations of turbulent flames. Combust. Theory Model. 9, 549–568 (2005)

    CAS  Google Scholar 

  • Liu, G., Swihart, M.T., Neelamegham, S.: Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling. Bioinformatics 21, 1194–1202 (2005)

    CAS  Google Scholar 

  • Lodier, G., Vervisch, L., Moureau, V., Domingo, P.: Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds. Combust. Flame 158, 2009–2016 (2011)

    CAS  Google Scholar 

  • Løvås, T.: Automatic generation of skeletal mechanisms for ignition combustion based on level of importance analysis. Combust. Flame 156, 1348–1358 (2009)

    Google Scholar 

  • Løvås, T., Nilsson, D., Mauss, F.: Automatic reduction procedure for chemical mechanisms applied to premixed methane/air flames. Proc. Combust. Inst. 28, 1809–1815 (2000)

    Google Scholar 

  • Løvås, T., Amneus, P., Mauss, F., Mastorakos, E.: Comparison of automatic reduction procedures for ignition chemistry. Proc. Combust. Inst. 29, 1387–1393 (2002a)

    Google Scholar 

  • Løvås, T., Mauss, F., Hasse, C., Peters, N.: Development of adaptive kinetics for application in combustion systems. Proc. Combust. Inst. 29, 1403–1410 (2002b)

    Google Scholar 

  • Løvås, T., Mastorakos, E., Goussis, D.A.: Reduction of the RACM scheme using computational singular perturbation analysis. J. Geophys. Res. Atmos. 111(D13302) (2006)

    Google Scholar 

  • Løvås, T., Navarro-Martinez, S., Rigopoulos, S.: On adaptively reduced chemistry in large eddy simulations. Proc. Combust. Inst. 33, 1339–1346 (2011)

    Google Scholar 

  • Lowe, R., Tomlin, A.: Low-dimensional manifolds and reduced chemical models for tropospheric chemistry simulations. Atmos. Environ. 34, 2425–2436 (2000a)

    CAS  Google Scholar 

  • Lowe, R.M., Tomlin, A.S.: The application of repro-modelling to a tropospheric chemical model. Environ. Model. Software 15, 611–618 (2000b)

    Google Scholar 

  • Lu, T., Law, C.K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30, 1333–1341 (2005)

    Google Scholar 

  • Lu, T., Law, C.: Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane. Combust. Flame 144, 24–36 (2006a)

    CAS  Google Scholar 

  • Lu, T., Law, C.K.: On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146, 472–483 (2006b)

    CAS  Google Scholar 

  • Lu, T., Law, C.K.: Systematic approach to obtain analytic solutions of quasi steady state species in reduced mechanisms. J. Phys. Chem. A 110, 13202–13208 (2006c)

    CAS  Google Scholar 

  • Lu, T., Law, C.K.: A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 154, 761–774 (2008a)

    CAS  Google Scholar 

  • Lu, T., Law, C.K.: Strategies for mechanism reduction for large hydrocarbons: n-heptane. Combust. Flame 154, 153–163 (2008b)

    CAS  Google Scholar 

  • Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35, 192–215 (2009)

    CAS  Google Scholar 

  • Lu, L.Y., Pope, S.B.: An improved algorithm for in situ adaptive tabulation. J. Comput. Phys. 228, 361–386 (2009)

    Google Scholar 

  • Lu, T., Law, C.K., Yoo, C.S., Chen, J.H.: Dynamic stiffness removal for direct numerical simulations. Combust. Flame 156, 1542–1551 (2009)

    CAS  Google Scholar 

  • Luche, J., Reuillon, M., Boettner, J.-C., Cathonnet, M.: Reduction of large detailed kinetic mechanisms: application to kerosene/air combustion. Combust. Sci. Technol. 176, 1935–1963 (2004)

    CAS  Google Scholar 

  • Luo, Z.Y., Lu, T.F., Maciaszek, M.J., Som, S., Longman, D.E.: A reduced mechanism for high-temperature oxidation of biodiesel surrogates. Energy Fuels 24, 6283–6293 (2010a)

    CAS  Google Scholar 

  • Luo, Z.Y., Lu, T.F., Som, S., Longman, D.E., Asme: Numerical study on combustion characteristics of biodiesel using a new reduced mechanism for methyl decanoate as surrogate. Proceedings of the ASME Internal Combustion Engine Division Fall Technical Conference, pp. 873–884 (2010b)

    Google Scholar 

  • Luo, Z.Y., Lu, T.F., Liu, J.W.: A reduced mechanism for ethylene/methane mixtures with excessive NO enrichment. Combust. Flame 158, 1245–1254 (2011)

    CAS  Google Scholar 

  • Luo, Z., Plomer, M., Lu, T.F., Som, S., Longman, D.E.: A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine application. Combust. Theory Model. 16, 369–385 (2012a)

    CAS  Google Scholar 

  • Luo, Z., Plomer, M., Lu, T.F., Som, S., Longman, D.E., Sarathy, S.M., Pitz, W.J.: A reduced mechanism for biodiesel surrogates for compression ignition engine applications. Fuel 99, 143–153 (2012b)

    CAS  Google Scholar 

  • Luo, Z., Som, S., Sarathy, S.M., Plomer, M., Pitz, W.J., Longman, D.E., Lu, T.F.: Development and validation of an n-dodecane skeletal mechanism for Diesel spray-combustion applications. Combust. Theory Model. 18, 187–203 (2014)

    Google Scholar 

  • Luong, M.B., Luo, Z., Lu, T.F., Chung, S.H., Yoo, C.S.: Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures under HCCI condition. Combust. Flame 160, 2038–2047 (2013)

    CAS  Google Scholar 

  • Lv, Y., Wang, Z.H., Zhou, J.H., Cen, K.F.: Reduced mechanism for hybrid NOx control process. Energy Fuels 23, 5920–5928 (2009)

    CAS  Google Scholar 

  • Maas, U.: Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics. Comput. Vis. Sci. 1, 69–81 (1998)

    Google Scholar 

  • Maas, U., Bykov, V.: The extension of the reaction/diffusion manifold concept to systems with detailed transport models. Proc. Combust. Inst. 33, 1253–1259 (2011)

    CAS  Google Scholar 

  • Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)

    CAS  Google Scholar 

  • Maas, U., Pope, S.B.: Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc. Combust. Inst. 25, 1349–1356 (1994)

    Google Scholar 

  • Maas, U., Thévenin, D.: Correlation analysis of direct numerical simulation data of turbulent non-premixed flames. Proc. Combust. Inst. 27, 1183–1189 (1998)

    Google Scholar 

  • Machrafi, H., Lombaert, K., Cavadias, S., Guibert, P., Amouroux, J.: Reduced chemical reaction mechanisms: experimental and HCCI modelling investigations of autoignition processes of iso-octane in internal combustion engines. Fuel 84, 2330–2340 (2005)

    CAS  Google Scholar 

  • Malik, A., Schramm, J., Nielsen, C., Løvås, T.: Development of surrogate for Fischer-Tropsch biofuel and reduced mechanism for combustion in Diesel engine. SAE Technical Paper 2013-2001-2599 (2013)

    Google Scholar 

  • Maly, T., Petzold, L.R.: Numerical methods and software for sensitivity analysis of differential-algebraic systems. Appl. Numer. Math. 20, 57–79 (1996)

    Google Scholar 

  • Maple. http://www.maplesoft.com/

  • Maria, G.: A review of algorithms and trends in kinetic model identification for chemical and biochemical systems. Chem. Biochem. Eng. Q. 18, 195–222 (2004)

    CAS  Google Scholar 

  • Maria, G.: Application of lumping analysis in modelling the living systems—a trade-off between simplicity and model quality. Chem. Biochem. Eng. Q. 20, 353–373 (2006)

    CAS  Google Scholar 

  • Maria, G.: Reduced modular representations applied to simulate some genetic regulatory circuits. Rev. Chim. 59, 318–324 (2008)

    CAS  Google Scholar 

  • Maria, G.: Lumped dynamic model for a bistable genetic regulatory circuit within a variable-volume whole-cell modelling framework. Asia-Pac. J. Chem. Eng. 4, 916–928 (2009)

    CAS  Google Scholar 

  • Marsden, A.R., Frenklach, M., Reible, D.D.: Increasing the computational feasibility of urban air-quality models that employ complex chemical mechanisms. JAPCA 37, 370–376 (1987)

    CAS  Google Scholar 

  • Masri, A.R., Cao, R., Pope, S.B., Goldin, G.M.: PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8, 1–22 (2004)

    CAS  Google Scholar 

  • Mauersberger, G.: ISSA (iterative screening and structure analysis)—a new reduction method and its application to the tropospheric cloud chemical mechanism RACM/CAPRAM 2.4. Atmos. Environ. 39, 4341–4350 (2005)

    CAS  Google Scholar 

  • Maurya, M.R., Bornheimer, S.J., Venkatasubramanian, V., Subramaniam, S.: Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks. IET Syst. Biol. 3, 24–39 (2009)

    CAS  Google Scholar 

  • Mauryaa, M.R., Katare, S., Patkar, P.R., Rundell, A.E., Venkatasubramanian, V.: A systematic framework for the design of reduced-order models for signal transduction pathways from a control theoretic perspective. Comput. Chem. Eng. 30, 437–452 (2006)

    Google Scholar 

  • Mazumder, S.: Adaptation of the in situ adaptive tabulation (ISAT) procedure for efficient computation of surface reactions. Comput. Chem. Eng. 30, 115–124 (2005)

    CAS  Google Scholar 

  • Meisel, W.S., Collins, D.C.: Repro-modeling: an approach to efficient model utilization and interpretation. IEEE Trans. SMC-3/4, 349–358 (1973)

    Google Scholar 

  • Mendiara, T., Alzueta, M., Millera, A., Bilbao, R.: An augmented reduced mechanism for methane combustion. Energy Fuels 18, 619–627 (2004)

    CAS  Google Scholar 

  • Michaelis, L., Menten, M.: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    CAS  Google Scholar 

  • Michel, J.-B., Colin, O., Veynante, D.: Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combust. Flame 152, 80–99 (2008)

    CAS  Google Scholar 

  • Michel, J.-B., Colin, O., Angelberger, C., Veynanteb, D.: Using the tabulated diffusion flamelet model ADF-PCM to simulate a lifted methane-air jet flame. Combust. Flame 156, 1318–1331 (2009)

    CAS  Google Scholar 

  • Michel, J.-B., Colin, O., Angelberger, C.: On the formulation of species reaction rates in the context of multi-species CFD codes using complex chemistry tabulation techniques. Combust. Flame 157, 701–714 (2010)

    CAS  Google Scholar 

  • Miller, W.G., Alberty, R.A.: Kinetics of the reversible Michaelis–Menten mechanism and the applicability of the Steady-state Approximation. J. Am. Chem. Soc. 80, 5146–5151 (1958)

    CAS  Google Scholar 

  • Mirgolbabaei, H., Echekki, T.: A novel principal component analysis-based acceleration scheme for LES–ODT: An a priori study. Combust. Flame 160, 898–908 (2013)

    CAS  Google Scholar 

  • Mirgolbabaei, H., Echekki, T.: Nonlinear reduction of combustion composition space with kernel principal component analysis. Combust. Flame 161, 118–126 (2014)

    CAS  Google Scholar 

  • Mirgolbabaei, H., Echekki, T., Smaoui, N.: A nonlinear principal component analysis approach for turbulent combustion composition space. Int. J. Hydrogen Energy 39, 4622–4633 (2014)

    CAS  Google Scholar 

  • Mitsos, A., Oxberry, G.M., Barton, P.I., Green, W.H.: Optimal automatic reaction and species elimination in kinetic mechanisms. Combust. Flame 155, 118–132 (2008)

    CAS  Google Scholar 

  • Montgomery, C.J., Yang, C., Parkinson, A.R., Chen, J.-Y.: Selecting the optimum quasi-steady-state species for reduced chemical kinetic mechanisms using a genetic algorithm. Combust. Flame 144, 37–52 (2006)

    CAS  Google Scholar 

  • Mora-Ramirez, M.A., Velasco, R.M.: Reduction of CB05 mechanism according to the CSP method. Atmos. Environ. 45, 235–243 (2011)

    CAS  Google Scholar 

  • Mosbach, S., Aldawood, A.M., Kraft, M.: Real-time evaluation of a detailed chemistry HCCI engine model using a tabulation technique. Combust. Sci. Technol. 180, 1263–1277 (2008)

    CAS  Google Scholar 

  • Nafe, J., Maas, U.: A general algorithm for improving ILDMs. Combust. Theory Model. 6, 697–709 (2002)

    Google Scholar 

  • Nafe, J., Maas, U.: Hierarchical generation of ILDMs of higher hydrocarbons. Combust. Flame 135, 17–26 (2003)

    CAS  Google Scholar 

  • Nagy, T., Turányi, T.: Reduction of very large reaction mechanisms using methods based on simulation error minimization. Combust. Flame 156, 417–428 (2009)

    CAS  Google Scholar 

  • Naik, C.V., Puduppakkam, K.V., Modak, A., Wang, C., Meeks, E.: Validated F-T fuel surrogate model for simulation of jet-engine combustion. Proc. ASME Turbo Expo 2, 1301–1308 (2010)

    Google Scholar 

  • Najafi-Yazdi, A., Cuenot, B., Mongeau, L.: Systematic definition of progress variables and Intrinsically Low-Dimensional. Flamelet Generated Manifolds for chemistry tabulation. Combust. Flame 159, 1197–1204 (2012)

    CAS  Google Scholar 

  • Németh, A., Vidóczy, T., Héberger, K., Kúti, Z., Wágner, J.: MECHGEN: Computer aided generation and reduction of reaction mechanisms. J. Chem. Inf. Comput. Sci. 42, 208–214 (2002)

    Google Scholar 

  • Neophytou, M.K., Goussis, D.A., van Loon, M., Mastorakos, E.: Reduced chemical mechanisms for atmospheric pollution using computational singular perturbation analysis. Atmos. Environ. 38, 3661–3673 (2004)

    CAS  Google Scholar 

  • Niemann, H., Schmidt, D., Maas, U.: An efficient storage scheme for reduced chemical kinetics based on orthogonal polynomials. J. Eng. Math. 31, 131–142 (1997)

    Google Scholar 

  • Niemeyer, K.E., Sung, C.J., Raju, M.P.: Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis. Combust. Flame 157, 1760–1770 (2010)

    CAS  Google Scholar 

  • Niemeyer, K.E., Sung, C.J.: On the importance of graph search algorithms for DRGEP-based mechanism reduction methods. Combust. Flame 158, 1439–1443 (2011)

    CAS  Google Scholar 

  • Niemeyer, K.E., Sung, C.J.: Mechanism reduction for multicomponent surrogates: a case study using toluene reference fuels. Combust. Flame 161, 2752–2764 (2014)

    CAS  Google Scholar 

  • Nilsson, D., Løvås, T., Amneus, P., Mauss, F.: Reduction of complex fuel chemistry for simulation of combustion in an HCCI engine. VDI-Berichte 1492, 511–516 (1999)

    CAS  Google Scholar 

  • Niu, Y.-S., Vervisch, L., Tao, P.D.: An optimization-based approach to detailed chemistry tabulation: automated progress variable definition. Combust. Flame 160, 776–785 (2013)

    CAS  Google Scholar 

  • Ocone, R., Astarita, G.: Lumping nonlinear kinetics in porous catalysts: diffusion-reaction lumping strategy. AIChE J. 39, 288–293 (1993)

    Google Scholar 

  • Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of chemical reaction systems. Chem. Rev. 98, 391–408 (1998)

    CAS  Google Scholar 

  • Oluwole, O.O., Bhattacharjee, B., Tolsma, J.E., Barton, P.I., Green, W.H.: Rigorous valid ranges for optimally reduced kinetic models. Combust. Flame 146, 348–365 (2006)

    CAS  Google Scholar 

  • Oluwole, O.O., Shi, Y., Wong, H.W., Green, W.H.: An exact-steady-state adaptive chemistry method for combustion simulations: combining the efficiency of reduced models and the accuracy of the full model. Combust. Flame 159, 2352–2362 (2012)

    CAS  Google Scholar 

  • Paczko, G., Lefdal, P.M., Peters, N.: Reduced reaction schemes for methane, methanol and propane flames. Proc. Combust. Inst. 21, 739–748 (1986)

    Google Scholar 

  • Pantea, C., Gupta, A., Rawlings, J.B., Craciun, G.: The QSSA in chemical kinetics: as taught and as practiced. In: Jonoska, N., Saito, M. (eds.) Discrete and Topological Models in Molecular Biology, pp. 419–442. Springer, Berlin (2014)

    Google Scholar 

  • Parente, A., Sutherland, J.C., Tognotti, L., Smith, P.J.: Identification of low-dimensional manifolds in turbulent flames. Proc. Combust. Inst. 32, 1579–1586 (2009)

    CAS  Google Scholar 

  • Parente, A., Sutherland, J.C., Dally, B.B., Tognotti, L., Smith, P.J.: Investigation of the MILD combustion regime via principal component analysis. Proc. Combust. Inst. 33, 3333–3341 (2011)

    CAS  Google Scholar 

  • Pepiot, P., Pitsch, H.: Systematic reduction of large chemical mechanisms. In: 4th Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia (2005)

    Google Scholar 

  • Pepiot-Desjardins, P., Pitsch, H.: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154, 67–81 (2008)

    CAS  Google Scholar 

  • Pera, C., Colin, O., Jay, S.: Development of a FPI detailed chemistry tabulation methodology for internal combustion engines. Oil Gas Sci. Technol. Rev. IFP 64, 243–258 (2009)

    CAS  Google Scholar 

  • Perini, F., Brakora, L.J., Reitz, D.R., Cantore, G.: Development of reduced and optimized reaction mechanisms based on genetic algorithms and element flux analysis. Combust. Flame 159, 103–119 (2012)

    CAS  Google Scholar 

  • Peters, N.: Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames. Lect. Notes Phys. 241, 90–109 (1985)

    Google Scholar 

  • Peters, N., Kee, R.J.: The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism. Combust. Flame 68, 17–29 (1987)

    CAS  Google Scholar 

  • Peters, N., Rogg, B. (eds.): Reduced Kinetic Mechanisms for Applications in Combustion Systems. Springer, Berlin (1993)

    Google Scholar 

  • Peters, N., Williams, F.A.: The asymptotic structure of stoichiometric methane-air flames. Combust. Flame 68, 185–207 (1987)

    CAS  Google Scholar 

  • Petzold, L., Zhu, W.: Model reduction for chemical kinetics: an optimization approach. AIChE J. 45, 869–886 (1999)

    CAS  Google Scholar 

  • Polifke, W., Geng, W., Döbbeling, K.: Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms. Combust. Flame 113, 119–135 (1998)

    CAS  Google Scholar 

  • Poon, H., Ng, H., Gan, S., Pang, K., Schramm, J.: Evaluation and development of chemical kinetic mechanism reduction scheme for biodiesel and Diesel fuel surrogates. SAE Int. J. Fuels Lubr. 6, 729–744 (2013)

    CAS  Google Scholar 

  • Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1, 41–63 (1997)

    CAS  Google Scholar 

  • Pope, S.B.: Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combust. Inst. 34, 1–31 (2013)

    CAS  Google Scholar 

  • Pope, S.B., Ren, Z.: Efficient implementation of chemistry in computational combustion. Flow Turbulence Combust. 82, 437–453 (2009)

    CAS  Google Scholar 

  • Prasad, G.N., Agnew, J.B., Sridhar, T.: Continuous reaction mixture for coal liquefaction. Theory. AIChE J. 32, 1277–1287 (1986)

    CAS  Google Scholar 

  • Radulescu, O., Gorban, A.N., Zinovyev, A., Lilienbaum, A.: Robust simplifications of multiscale biochemical networks. BMC Syst. Biol. 2, 86 (2008)

    Google Scholar 

  • Ramaroson, R., Pirre, M., Cariolle, D.: A box model for online computations of diurnal-variations in a 1-d model—potential for application in multidimensional cases. Ann. Geophys. Atmos. Hydrospheres Space Sci. 10, 416–428 (1992)

    Google Scholar 

  • Ranzi, E., Faravelli, T., Gaffuri, P., Sogaro, A.: Low-temperature combustion: automatic generation of primary oxidation reactions and lumping procedures. Combust. Flame 102, 179–192 (1995)

    CAS  Google Scholar 

  • Ranzi, E., Faravelli, T., Gaffuri, P., Sogaro, A., D’Anna, A., Ciajolo, A.: A wide-range modeling study of iso-octane oxidation. Combust. Flame 108, 24–42 (1997)

    CAS  Google Scholar 

  • Ranzi, E., Dente, M., Goldaniga, A., Bozzano, G., Faravelli, T.: Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Prog. Energy Combust. Sci. 27, 99–139 (2001)

    CAS  Google Scholar 

  • Ranzi, E., Frassoldati, A., Granata, S., Faravelli, T.: Wide-range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes. Ind. Eng. Chem. Res. 44, 5170–5183 (2005)

    CAS  Google Scholar 

  • Ren, Z., Pope, S.B.: Species reconstruction using pre-image curves. Proc. Combust. Inst. 30, 1293–1300 (2005)

    Google Scholar 

  • Ren, Z., Pope, S.B.: The geometry of reaction trajectories and attracting manifolds in composition space. Combust. Theory Model. 10, 361–388 (2006a)

    CAS  Google Scholar 

  • Ren, Z., Pope, S.B.: The use of slow manifolds in reactive flows. Combust. Flame 147, 243–261 (2006b)

    CAS  Google Scholar 

  • Ren, Z., Pope, S.B.: Reduced description of complex dynamics in reactive systems. J. Phys. Chem. A 111, 8464–8474 (2007a)

    CAS  Google Scholar 

  • Ren, Z., Pope, S.B.: Transport-chemistry coupling in the reduced description of reactive flows. Combust. Theory Model. 11, 715–739 (2007b)

    CAS  Google Scholar 

  • Ren, Z., Pope, S.B., Vladimirsky, A., Guckenheimer, J.M.: The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics. J. Chem. Phys. 124, 114111 (2006)

    Google Scholar 

  • Ren, Z., Pope, S.B., Vladimirsky, A., Guckenheimer, J.M., John, M.: Application of the ICE-PIC method for the dimension reduction of chemical kinetics coupled with transport. Proc. Combust. Inst. 31, 473–481 (2007)

    CAS  Google Scholar 

  • Ren, Z., Liu, Y., Lu, T., Lu, L., Oluwole, O.O., Goldin, G.M.: The use of dynamic adaptive chemistry and tabulation in reactive flow simulations. Combust. Flame 161, 127–137 (2014a)

    CAS  Google Scholar 

  • Ren, Z., Xu, C., Lu, T., Singer, M.A.: Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations. J. Comput. Phys. 263, 19–36 (2014b)

    CAS  Google Scholar 

  • Reonhardt, V., Winckler, M., Lebiedz, D.: Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches. J. Phys. Chem. A 112, 1712–1718 (2008)

    Google Scholar 

  • Rhodes, C., Morari, M., Wiggins, S.: Identification of low order manifolds: validating the algorithm of Maas and Pope. Chaos 9, 108–123 (1999)

    CAS  Google Scholar 

  • Rice, O.K.: Conditions for a steady state in chemical kinetics. J. Phys. Chem. 64, 1851–1857 (1960)

    CAS  Google Scholar 

  • Riedel, U., Schmidt, D., Maas, U., Warnatz, J.: Laminar flame calculations based on automatically simplified chemical kinetics. In: Proceedings of Eutherm. Seminar #35, Compact Fired Heating Systems, Leuven, Belgium (1994)

    Google Scholar 

  • Rigopoulos, S.: The rate-controlled constrained equilibrium (RCCE) method for reducing chemical kinetics in systems with time-scale separation. Int. J. Multiscale Comput. Eng. 5, 11–18 (2007)

    CAS  Google Scholar 

  • Rigopoulos, S., Løvås, T.: A LOI-RCCE methodology for reducing chemical kinetics, with application to laminar premixed flames. Proc. Combust. Inst. 32, 569–576 (2009)

    CAS  Google Scholar 

  • Ross, J.: Determination of complex reaction mechanisms. Analysis of chemical, biological and genetic networks. J. Phys. Chem. A 112, 2134–2143 (2008)

    CAS  Google Scholar 

  • Ross, J., Vlad, M.O.: Nonlinear kinetics and new approaches to complex reaction mechanisms. Ann. Rev. Phys. Chem. 50, 51–78 (1999)

    CAS  Google Scholar 

  • Roussel, M.R., Fraser, S.J.: Geometry of the steady-state approximation: perturbation and accelerated convergence methods. J. Chem. Phys. 93, 1072–1081 (1990)

    CAS  Google Scholar 

  • Roussel, M.R., Fraser, S.J.: Accurate steady-state approximation: implications for kinetics experiments and mechanism. J. Chem. Phys. 94, 7106–7113 (1991a)

    CAS  Google Scholar 

  • Roussel, M.R., Fraser, S.J.: On the geometry of transient relaxation. J. Chem. Phys. 94, 7106–7113 (1991b)

    CAS  Google Scholar 

  • Roussel, M.R., Fraser, S.J.: Invariant manifold methods for metabolic model reduction. Chaos 11, 196–206 (2001)

    CAS  Google Scholar 

  • Roussel, M.R., Tang, T.: The functional equation truncation method for approximating slow invariant manifolds: a rapid method for computing intrinsic low-dimensional manifolds. J. Chem. Phys. 125, 214103 (2006)

    Google Scholar 

  • Russi, T., Packard, A., Feeley, R., Frenklach, M.: Sensitivity analysis of uncertainty in model prediction. J. Phys. Chem. A 112, 2579–2588 (2008)

    CAS  Google Scholar 

  • Russi, T., Packard, A., Frenklach, M.: Uncertainty quantification: making predictions of complex reaction systems reliable. Chem. Phys. Lett. 499, 1–8 (2010)

    CAS  Google Scholar 

  • Sandu, A., Verwer, J.G., Blom, J.G., Spee, E.J., Carmichael, G.R., Potra, F.A.: Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmos. Environ. 31, 3459–3472 (1997a)

    CAS  Google Scholar 

  • Sandu, A., Verwer, J.G., Van Loon, M., Carmichael, G.R., Potra, F.A., Dabdub, D., Seinfeld, J.H.: Benchmarking stiff ODE solvers for atmospheric chemistry problems I. implicit vs. explicit. Atmos. Environ. 31, 3151–3166 (1997b)

    CAS  Google Scholar 

  • Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T., Law, C.K.: Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proc. Combust. Inst. 31, 1291–1298 (2007)

    Google Scholar 

  • Saunders, S.M., Pascoe, S., Johnson, A.P., Pilling, M.J., Jenkin, M.E.: Development and preliminary test results of an expert system for the automatic generation of tropospheric VOC degradation mechanisms. Atmos. Environ. 37, 1723–1735 (2003)

    CAS  Google Scholar 

  • Savage, P.E.: Pyrolysis of a binary mixture of complex hydrocarbons—reaction modeling. Chem. Eng. Sci. 45, 859–873 (1990)

    CAS  Google Scholar 

  • Saxena, V., Pope, S.B.: PDF simulations of turbulent combustion incorporating detailed chemistry. Combust. Flame 117, 340–350 (1999)

    CAS  Google Scholar 

  • Sayasov, Y.S., Vasil’eva, A.B.: Обоснование и условия применимости метода квазистационарных концентраций Семенова–Боденштейна. Ж. Физ. Хим. 29, 802–810 (1955)

    CAS  Google Scholar 

  • Schuchardt, K., Oluwole, O., Pitz, W., Rahn, L.A., Green, W.H., Leahy, D., Pancerella, C., Sjöberg, M., Dec, J.: Development of the RIOT web service and information technologies to enable mechanism reduction for HCCI simulations. J. Phys. Conf. Ser. 16, 107–112 (2005)

    Google Scholar 

  • Schwer, D.A., Lu, P., Green, W.H.: An adaptive chemistry approach to modeling complex kinetics in reacting flows. Combust. Flame 133, 451–465 (2003)

    CAS  Google Scholar 

  • Segel, L.A.: On the validity of the steady-state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593 (1988)

    CAS  Google Scholar 

  • Segel, L.A., Slemrod, M.: The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989)

    Google Scholar 

  • Semenoff, N.: On the kinetics of complex reactions. J. Chem. Phys. 7, 683–699 (1939)

    Google Scholar 

  • Semenov, N.N.: Кинетика сложных гомогенных реакции. Ж. Физ. Хим. 17, 187–214 (1943)

    CAS  Google Scholar 

  • Seshadri, K., Lu, T.F., Herbinet, O., Humer, S.B., Niemann, U., Pitz, W.J., Seiser, R., Law, C.K.: Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar non-premixed flows. Proc. Combust. Inst. 32, 1067–1074 (2009)

    CAS  Google Scholar 

  • Shanks, D.: Non-linear transformations of divergent and slowly convergent sequences and an example from hydrodynamics. Phys. Rev. 76, 876–876 (1949)

    Google Scholar 

  • Sheen, D., Wang, H.: Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane. Combust. Flame 158, 645–656 (2011a)

    CAS  Google Scholar 

  • Sheen, D.A., Wang, H.: The method of uncertainty quantification and minimization using polynomial chaos expansions. Combust. Flame 158, 2358–2374 (2011b)

    CAS  Google Scholar 

  • Sheen, D.A., You, X., Wang, H., Løvås, T.: Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion. Proc. Combust. Inst. 32, 535–542 (2009)

    CAS  Google Scholar 

  • Sheen, D.A., Rosado-Reyes, C.M., Tsang, W.: Kinetics of H atom attack on unsaturated hydrocarbons using spectral uncertainty propagation and minimization techniques. Proc. Combust. Inst. 34, 527–536 (2013)

    CAS  Google Scholar 

  • Shenvi, N., Geremia, J., Rabitz, H.: Efficient chemical kinetic modeling through neural network maps. J. Chem. Phys. 120, 9942–9951 (2004)

    CAS  Google Scholar 

  • Shi, Y., Ge, H.W., Brakora, J.L., Reitz, R.D.: Automatic chemistry mechanism reduction of hydrocarbon fuels for HCCI engines based on DRGEP and PCA methods with error control. Energy Fuels 24, 1646–1654 (2010a)

    CAS  Google Scholar 

  • Shi, Y., Liang, L., Ge, H.W., Reitz, R.D.: Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes. Combust. Theory Model. 14, 69–89 (2010b)

    CAS  Google Scholar 

  • Shorter, J.A., Ip, P.C., Rabitz, H.A.: An efficient chemical kinetics solver using high dimensional model representation. J. Phys. Chem. A 103, 7192–7198 (1999)

    CAS  Google Scholar 

  • Sikalo, N., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I.: A genetic algorithm-based method for the automatic reduction of reaction mechanisms. Int J Chem. Kinet. 46, 41–59 (2014)

    CAS  Google Scholar 

  • Singer, M.A., Pope, S.B.: Exploiting ISAT to solve the reaction-diffusion equation. Combust. Theory Model 8, 361–383 (2004)

    Google Scholar 

  • Singer, M.A., Pope, S.B., Najm, H.N.: Operator-splitting with ISAT to model reacting flow with detailed chemistry. Combust. Theory Model. 10, 199–217 (2006)

    CAS  Google Scholar 

  • Singh, S., Powers, J.M., Paolucci, S.: On slow manifolds of chemically reactive systems. J. Chem. Phys. 117, 1482–1496 (2002)

    CAS  Google Scholar 

  • Skodje, R.T., Davis, M.J.: Geometrical simplification of complex kinetic systems. J. Phys. Chem. A 105, 10356–10365 (2001)

    CAS  Google Scholar 

  • Snow, R.M.: A chemical kinetics computer program for homogeneous and free-radical systems of reactions. J. Phys. Chem. 70, 2780–2786 (1966)

    CAS  Google Scholar 

  • Soyhan, H., Mauss, F., Sorusbay, C.: Chemical kinetic modeling of combustion in internal combustion engines using reduced chemistry. Combust. Sci. Technol. 174, 73–91 (2002)

    CAS  Google Scholar 

  • Sportisse, B., Djouad, R.: Reduction of chemical kinetics in air pollution modelling. J. Comp. Phys. 164, 354–376 (2000)

    CAS  Google Scholar 

  • Sportisse, B., Djouad, R.: Use of proper orthogonal decompositions for the reduction of atmospheric chemistry. J. Geophys. Res. Atmos. 112(D06303) (2007)

    Google Scholar 

  • Stagni, A., Cuoci, A., Frassoldati, A., Faravelli, T., Ranzi, E.: Lumping and reduction of detailed kinetic schemes: an effective coupling. Ind. Eng. Chem. Res. 53, 9004–9016 (2014)

    CAS  Google Scholar 

  • Stockmayer, W.H.: The steady-state approximation in polymerization kinetics. J. Chem. Phys. 12, 143–144 (1944)

    CAS  Google Scholar 

  • Strang, G.: On construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Google Scholar 

  • Straube, R., Flockerzi, D., Müller, S.C., Hauser, M.J.B.: Reduction of chemical reaction networks using quasi-integrals. J. Phys. Chem. A 109, 441–450 (2005)

    CAS  Google Scholar 

  • Ströhle, J., Myhrvold, T.: Reduction of a detailed reaction mechanism for hydrogen combustion under gas turbine conditions. Combust. Flame 144, 545–557 (2006)

    Google Scholar 

  • Sun, W.T., Chen, Z., Gou, X.L., Ju, Y.G.: A path flux analysis method for the reduction of detailed chemical kinetic mechanisms. Combust. Flame 157, 1298–1307 (2010)

    CAS  Google Scholar 

  • Sundaram, K.M., Froment, G.F.: Accuracy of pseudo-steady-state approximation for radicals in thermal-cracking. Int. J. Chem. Kinet. 10(11), 1189–1193 (1978)

    CAS  Google Scholar 

  • Sunnaker, M., Schmidt, H., Jirstrand, M., Cedersund, G.: Zooming of states and parameters using a lumping approach including back-translation. BMC Syst. Biol. 4, 28 (2010)

    Google Scholar 

  • Sunnaker, M., Cedersund, G., Jirstrand, M.: A method for zooming of nonlinear models of biochemical systems. BMC Syst. Biol. 5, 140 (2011)

    Google Scholar 

  • Surovtsova, I., Simus, N., Lorenz, T., König, A., Sahle, S., Kumme, U.: Accessible methods for the dynamic time-scale decomposition of biochemical systems. Bioinformatics 25, 2816–2823 (2009)

    CAS  Google Scholar 

  • Sutherland, J.C., Parente, A.: Combustion modeling using principal component analysis. Proc. Combust. Inst. 32, 1563–1570 (2009)

    CAS  Google Scholar 

  • Taing, S., Masri, A.R., Pope, S.B.: pdf calculations of turbulent nonpremixed flames of H2/CO2 using reduced chemical mechanisms. Combust. Flame 95, 133–150 (1993)

    CAS  Google Scholar 

  • Tang, Q., Pope, S.B.: Implementation of combustion chemistry by in situ adaptive tabulation of rate-controlled constrained equilibrium manifolds. Proc. Combust. Inst. 29, 1411–1417 (2002)

    CAS  Google Scholar 

  • Tang, Q., Pope, S.B.: A more accurate projection in the rate-controlled constrained-equilibrium method for dimension reduction of combustion chemistry. Combust. Theory Model. 8, 255–279 (2004)

    Google Scholar 

  • Tang, Q., Xu, J., Pope, S.B.: Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames. Proc. Combust. Inst. 28, 133–139 (2000)

    CAS  Google Scholar 

  • Taylor, S.R., Doyle III, F.J., Petzold, L.R.: Oscillator model reduction preserving the phase response: application to the circadian clock. Biophys. J. 95, 1658–1673 (2008)

    CAS  Google Scholar 

  • Tihonov, A.N.: Системы дифференциальных уравнений, содержащие малые параметры при производных. Мат. Сборник 31, 575–586 (1952)

    Google Scholar 

  • Tomlin, A.S., Pilling, M.J., Turányi, T., Merkin, J.H., Brindley, J.: Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses. Combust. Flame 91, 107–130 (1992)

    CAS  Google Scholar 

  • Tomlin, A.S., Li, G.Y., Rabitz, H., Tóth, J.: A general-analysis of approximate nonlinear lumping in chemical-kinetics 2. Constrained lumping. J. Chem. Phys. 101, 1188–1201 (1994)

    CAS  Google Scholar 

  • Tomlin, A.S., Turányi, T., Pilling, M.J.: Mathematical tools for the construction, investigation and reduction of combustion mechanisms. In: Pilling, M.J., Hancock, G. (eds.) Low-temperature Combustion and Autoignition. Comprehensive Chemical Kinetics, vol. 35, pp. 293–437. Elsevier, Amsterdam (1997)

    Google Scholar 

  • Tomlin, A.S., Whitehouse, L., Lowe, R., Pilling, M.J.: Low-dimensional manifolds in tropospheric chemical systems. Faraday Discuss. 120, 125–146 (2001)

    CAS  Google Scholar 

  • Tonse, S.R., Moriarty, N.W., Brown, N.J., Frenklach, M.: PRISM: Piece-wise reusable implementation of solution mapping. An economical strategy for chemical kinetics. Israel J. Chem. 39, 97–106 (1999)

    CAS  Google Scholar 

  • Tonse, S.R., Moriarty, N.W., Frenklach, M., Brown, N.J.: Computational economy improvements in PRISM. Int. J. Chem. Kinet. 35, 438–452 (2003)

    CAS  Google Scholar 

  • Tosatto, L., Bennett, B.A.V., Smooke, M.D.: A transport-flux-based directed relation graph method for the spatially inhomogeneous instantaneous reduction of chemical kinetic mechanisms. Combust. Flame 158, 820–835 (2011)

    CAS  Google Scholar 

  • Tosatto, L., Bennett, B.A.V., Smooke, M.D.: Comparison of different DRG-based methods for the skeletal reduction of JP-8 surrogate mechanisms. Combust. Flame 160, 1572–1582 (2013)

    CAS  Google Scholar 

  • Toth, J., Li, G.Y., Rabitz, H., Tomlin, A.S.: Effect of lumping and expanding on kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997)

    Google Scholar 

  • Treviño, C.: Ignition phenomena in H2/O2 mixtures. Prog. Astronaut. Aeronautics 131, 19–43 (1991)

    Google Scholar 

  • Treviño, C., Liñan, A.: Numerical and asymptotic analysis of ignition processes. In: Buckmaster, J., Jackson, T.L., Kumar, A. (eds.) Combustion in High-Speed Flows, pp. 477–490. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  • Treviño, C., Mendez, F.: Asymptotic analysis of the ignition of hydrogen by a hot plate in a boundary layer flow. Combust. Sci. Technol. 78, 197–216 (1991)

    Google Scholar 

  • Treviño, C., Mendez, F.: Reduced kinetic mechanism for methane ignition. Proc. Combust. Inst. 24, 121–127 (1992)

    Google Scholar 

  • Treviño, C., Solorio, F.: Asymptotic analysis of high temperature ignition of CO/H2/O2 mixtures. Combust. Flame 86, 285–295 (1991)

    Google Scholar 

  • Turányi, T.: KINAL - A program package for kinetic-analysis of reaction-mechanisms. Comput. Chem. 14, 253–254 (1990a)

    Google Scholar 

  • Turányi, T.: Reduction of large reaction mechanisms. New J. Chem. 14, 795–803 (1990b)

    Google Scholar 

  • Turányi, T.: Sensitivity analysis of complex kinetic systems. Tools and applications. J. Math. Chem. 5, 203–248 (1990c)

    Google Scholar 

  • Turányi, T.: Parametrization of reaction mechanisms using orthonormal polynomials. Comput. Chem. 18, 45–54 (1994)

    Google Scholar 

  • Turányi, T.: Application of repro-modelling for the reduction of combustion mechanisms. Proc. Combust. Inst. 25, 948–955 (1995)

    Google Scholar 

  • Turányi, T., Tóth, J.: Comments to an article of Frank-Kamenetskii on the quasi-steady-state approximation. Acta Chim. Hung. Models Chem. 129(6), 903–907 (1992)

    Google Scholar 

  • Turányi, T., Bérces, T., Vajda, S.: Reaction rate analysis of complex kinetic systems. Int. J. Chem. Kinet. 21, 83–99 (1989)

    Google Scholar 

  • Turányi, T., Györgyi, L., Field, R.J.: Analysis and simplification of the GTF model of the Belousov-Zhabotinsky reaction. J. Phys. Chem. 97, 1931–1941 (1993a)

    Google Scholar 

  • Turányi, T., Tomlin, A.S., Pilling, M.J.: On the error of the quasi-steady-state approximation. J. Phys. Chem. 97, 163–172 (1993b)

    Google Scholar 

  • Turco, R.P., Whitten, R.C.: Comparison of several computational techniques for solving some common aeronomic problems. J. Geophys. Res. 79, 3179–3185 (1974)

    CAS  Google Scholar 

  • Tzafriri, A.R., Edelman, E.R.: The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol. 226, 303–313 (2004)

    CAS  Google Scholar 

  • Tzafriri, A.R., Edelman, E.R.: On the validity of the quasi-steady state approximation of bimolecular reactions in solution. J. Theor. Biol. 233, 343–350 (2005)

    CAS  Google Scholar 

  • Ugarte, S., Gao, Y., Metghalchi, H.: Application of the maximum entropy principle in the analysis of a non-equilibrium chemically reacting mixture. Int. J. Thermodyn. 8, 43–53 (2005)

    Google Scholar 

  • Vajda, S., Turányi, T.: Principal component analysis for reducing the Edelson-Field-Noyes model of the Belousov-Zhabotinsky reaction. J. Phys. Chem. 90, 1664–1670 (1986)

    CAS  Google Scholar 

  • Vajda, S., Valkó, P., Turányi, T.: Principal component analysis of kinetic models. Int. J. Chem. Kinet. 17, 55–81 (1985)

    CAS  Google Scholar 

  • Valorani, M., Creta, F., Goussis, D.A., Najm, H.N., Lee, J.C.: Chemical kinetics mechanism simplification via CSP. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics, pp. 900–904. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Valorani, M., Creta, F., Goussis, D., Lee, J., Najm, H.: An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP. Combust. Flame 146, 29–51 (2006)

    CAS  Google Scholar 

  • Van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using Flamelet Generated Manifolds. Combust. Sci. Technol. 161, 113–137 (2000)

    Google Scholar 

  • Van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed counterflow flames using the flamelet-generated manifold method. Combust. Theory Model. 6, 463–478 (2002)

    Google Scholar 

  • Van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127, 2124–2134 (2001)

    Google Scholar 

  • Verhoeven, L.M., Ramaekers, W.J.S., van Oijen, J.A., de Goey, L.P.H.: Modeling non-premixed laminar co-flow flames using flamelet-generated manifolds. Combust. Flame 159, 230–241 (2012)

    CAS  Google Scholar 

  • Vervisch, P.E., Colin, O., Michel, J.-B., Darabiha, N.: NO relaxation approach (NORA) to predict thermal NO in combustion chambers. Combust. Flame 158, 1480–1490 (2011)

    CAS  Google Scholar 

  • Vol’pert, A.I.: Дифференциальные уравнения на графах. Мат. Сборник 88, 578–588 (1972)

    Google Scholar 

  • Vol’pert, A.I., Hudjaev, S.I.: Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus Nijhoff, Dordrecht (1985)

    Google Scholar 

  • Vora, N., Daoutidis, P.: Nonlinear model reduction of chemical reaction systems. AIChE J. 47, 2320–2332 (2001)

    CAS  Google Scholar 

  • Wang, Q.-D.: Skeletal mechanism generation for high-temperature combustion of H2/CO/C1−C4 hydrocarbons. Energy Fuels 27, 4021–4030 (2013)

    CAS  Google Scholar 

  • Wang, L.G., Fox, R.O.: Application of in situ adaptive tabulation to CFD simulation of nano-particle formation by reactive precipitation. Chem. Eng. Sci. 58, 4387–4401 (2003)

    CAS  Google Scholar 

  • Wang, H., Frenklach, M.: Detailed reduction of reaction mechanisms for combustion modeling. Combust. Flame 87, 365–370 (1991)

    CAS  Google Scholar 

  • Wang, W., Rogg, B.: Premixed ethylene/air and ethane/air flames: reduced mechanisms based on inner iteration. In: Peters, N., Rogg, B. (eds.) Reduced Kinetic Mechanisms for Applications in Combustion Systems. Lecture Notes in Physics Monographs, vol. 15, pp. 82–107. Springer, New York (1993)

    Google Scholar 

  • Wang, S.W., Georgopoulos, P.G., Li, G., Rabitz, H.: Computationally efficient atmospheric chemical kinetic modeling by means of high dimensional model representation (HDMR). Lect. Note Comput. Sci. 2179, 326–333 (2001)

    Google Scholar 

  • Wang, S.W., Balakrishnan, S., Georgopoulos, P.: Fast equivalent operational model of tropospheric alkane photochemistry. AIChE J. 51, 1297–1303 (2005)

    CAS  Google Scholar 

  • Wang, H., Yao, M., Reitz, R.D.: Development of a reduced primary reference fuel mechanism for internal combustion engine combustion simulations. Energy Fuels 27, 7843–7853 (2013)

    CAS  Google Scholar 

  • Warnatz, J.: Resolution of gas phase and surface combustion chemistry into elementary reactions. Proc. Combust. Inst. 24, 553–579 (1992)

    Google Scholar 

  • Warth, V., Battin-Leclerc, F., Fournet, R., Glaude, P.A., Côme, G.M., Scacchi, G.: Computer based generation of reaction mechanisms for gas-phase oxidation. Comput. Chem. 24, 541–560 (2000)

    CAS  Google Scholar 

  • Watson, L.A., Shallcross, D.E., Utembe, S.R., Jenkin, M.E.: A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 2: Gas phase mechanism reduction. Atmos. Environ. 42, 7196–7204 (2008)

    CAS  Google Scholar 

  • Weekman Jr., V.W.: Lumps, models, and kinetics in practice. AIChE Monogr. Ser. 11, 3–29 (1979)

    Google Scholar 

  • Wei, J., Kuo, J.C.W.: A lumping analysis in monomolecular reaction systems. Ind. Eng. Chem. Fundam. 8, 114–123 (1969)

    CAS  Google Scholar 

  • Whitehouse, L.E., Tomlin, A.S., Pilling, M.J.: Systematic reduction of complex tropospheric chemical mechanisms using sensitivity and time-scale analyses. Atmos. Chem. Phys. Discuss. 4, 3721–3783 (2004a)

    Google Scholar 

  • Whitehouse, L.E., Tomlin, A.S., Pilling, M.J.: Systematic reduction of complex tropospheric chemical mechanisms. Part I: sensitivity and time-scale analyses. Atmos. Chem. Phys. 4, 2025–2056 (2004b)

    CAS  Google Scholar 

  • Whitehouse, L.E., Tomlin, A.S., Pilling, M.J.: Systematic reduction of complex tropospheric chemical mechanisms.Part II: Lumping using a time-scale based approach. Atmos. Chem. Phys. 4, 2057–2081 (2004c)

    CAS  Google Scholar 

  • Whitten, G.Z., Hogo, H., Killus, J.P.: The Carbon Bond Mechanism: a condensed kinetic mechanism for photochemical smog analysis techniques to a photochemical ozone model. Environ. Sci. Technol. 14, 690–700 (1980)

    CAS  Google Scholar 

  • Wu, Z., Qiao, X., Huang, Z.: A criterion based on computational singular perturbation for the construction of a reduced mechanism for dimethyl ether oxidation. J. Serb. Chem. Soc. 78, 1177–1188 (2013)

    CAS  Google Scholar 

  • Xia, A.G., Michelangeli, D.V., Makar, P.A.: Mechanism reduction for the formation of secondary organic aerosol for integration into a 3-dimensional regional air quality model: alpha-pinene oxidation system. Atmos. Chem. Phys. 9, 4341–4362 (2009)

    CAS  Google Scholar 

  • Xie, N., Battaglia, F., Fox, R.O.: Simulations of multiphase reactive flows in fluidized beds using in situ adaptive tabulation. Combust. Theory Model. 8, 195–209 (2004)

    Google Scholar 

  • Xu, J., Pope, S.B.: PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123, 281–307 (2000)

    CAS  Google Scholar 

  • Xu, M., Fan, Y., Yuan, J.: Simplification of the mechanims of NOx formation in a CH4/air combustion system. Int. J. Energy Res. 23, 1267–1276 (1999)

    CAS  Google Scholar 

  • Xuan, Y., Blanquart, G.: A flamelet-based a priori analysis on the chemistry tabulation of polycyclic aromatic hydrocarbons in non-premixed flames. Combust. Flame 161, 1516–1525 (2014)

    CAS  Google Scholar 

  • Yang, B., Pope, S.B.: Treating chemistry in combustion with detailed mechanisms -In situ adaptive tabulation in principal directions—premixed combustion. Combust. Flame 112, 85–112 (1998)

    CAS  Google Scholar 

  • Yang, H., Ren, Z., Lu, T., Goldin, G.M.: Dynamic adaptive chemistry for turbulent flame simulations. Combust. Theory Model. 17, 167–183 (2013)

    CAS  Google Scholar 

  • Yannacopoulos, A.N., Tomlin, A.S., Brindley, J., Merkin, J.H., Pilling, M.J.: The use of algebraic sets in the approximation of inertial manifolds and lumping in chemical kinetic systems. Physica D 83, 421–449 (1995)

    CAS  Google Scholar 

  • Yannacopoulos, A.N., Tomlin, A.S., Brindley, J., Merkin, J.H., Pilling, M.J.: The error of the quasi steady-state approximation in spatially distributed systems. Chem. Phys. Lett. 248, 63–70 (1996a)

    CAS  Google Scholar 

  • Yannacopoulos, A.N., Tomlin, A.S., Brindley, J., Merkin, J.H., Pilling, M.J.: Error propagation in approximations to reaction-diffusion-advection equations. Phys. Lett. A 223, 82–90 (1996b)

    CAS  Google Scholar 

  • Yarwood, G., Rao, S., Yocke, M., Whitten, G.: Updates to the Carbon Bond chemical mechanism: CB05. Final Report to the US EPA, RT-0400675 (2005)

    Google Scholar 

  • Yoo, C.S., Lu, T.F., Chen, J.H., Law, C.K.: Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: parametric study. Combust. Flame 158, 1727–1741 (2011)

    CAS  Google Scholar 

  • Yoo, C.S., Luo, Z., Lu, T.F., Kim, H., Chen, J.H.: DNS study of the ignition of a lean iso-octane/air mixture under HCCI and SACI conditions. Proc. Combust. Inst. 34, 2985–2993 (2012)

    Google Scholar 

  • You, X.Q., Russi, T., Packard, A., Frenklach, M.: Optimization of combustion kinetic models on a feasible set. Proc. Combust. Inst. 33, 509–516 (2011)

    CAS  Google Scholar 

  • You, X.Q., Packard, A., Frenklach, M.: Process informatics tools for predictive modeling: hydrogen combustion. Int. J. Chem. Kinet. 44, 101–116 (2012)

    CAS  Google Scholar 

  • Zambon, A.C., Chelliah, H.K.: Explicit reduced reaction models for ignition, flame propagation, and extinction of C2H4/CH4/H2 and air systems. Combust. Flame 150, 71–91 (2007)

    CAS  Google Scholar 

  • Zhang, S., Androulakis, I.P., Ierapetritou, M.G.: A hybrid kinetic mechanism reduction scheme based on the on-the-fly reduction and quasi-steady-state approximation. Chem. Eng. Sci. 93, 150–162 (2013)

    CAS  Google Scholar 

  • Zhang, S., Broadbelt, L.J., Androulakis, I.P., Ierapetritou, M.G.: Reactive flow simulation based on the integration of automated mechanism generation and on-the-fly reduction. Energy Fuels 28, 4801–4811 (2014)

    CAS  Google Scholar 

  • Zhao, W., Chen, D., Hu, S.: Differential fraction-based kinetic model for simulating hydrodesulfurization process of petroleum fraction. Comput. Chem. 26, 141–148 (2002)

    CAS  Google Scholar 

  • Zheng, X.L., Lu, T.F., Law, C.K.: Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene. Proc. Combust. Inst. 31, 367–375 (2007)

    Google Scholar 

  • Zhou, Z.J., Lü, Y., Wang, Z.H., Xu, Y.W., Zhou, J.H., Cen, K.F.: Systematic method of applying ANN for chemical kinetics reduction in turbulent premixed combustion modeling. Chin. Sci. Bull. 58, 486–492 (2013)

    CAS  Google Scholar 

  • Zsély, I.G., Turányi, T.: Investigation and reduction of two methane combustion mechanisms. Arch. Combust. 21, 173–177 (2001)

    Google Scholar 

  • Zsély, I.G., Turányi, T.: The influence of thermal coupling and diffusion on the importance of reactions: the case study of hydrogen-air combustion. PCCP 5, 3622–3631 (2003)

    Google Scholar 

  • Zsély, I.G., Zádor, J., Turányi, T.: On the similarity of the sensitivity functions of methane combustion models. Combust. Theory Model. 9, 721–738 (2005)

    Google Scholar 

  • Zsély, I.G., Nagy, T., Simmie, J.M., Curran, H.J.: Reduction of a detailed kinetic model for the ignition of methane/propane mixtures at gas turbine conditions using simulation error minimization methods. Combust. Flame 158, 1469–1479 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turányi, T., Tomlin, A.S. (2014). Reduction of Reaction Mechanisms. In: Analysis of Kinetic Reaction Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44562-4_7

Download citation

Publish with us

Policies and ethics