Skip to main content

Mechanism Construction and the Sources of Data

  • Chapter
  • First Online:
Book cover Analysis of Kinetic Reaction Mechanisms

Abstract

The creation of a kinetic reaction mechanism involves the definition of stoichiometries for each of the reaction steps and also the provision of values for all kinetic and thermodynamic parameters. Whilst this sounds like a simple task, in reality, it is extremely complicated. Reaction mechanisms often undergo updates and revisions over time, as the quantification of input parameters is improved through new kinetic studies or as new reaction steps are identified as being important. Recently developed mechanisms describing a range of kinetic problems in combustion, pyrolysis, atmospheric chemistry and biochemistry tend to be very large, and it is almost impossible to generate such mechanisms by hand. Fortunately, several mathematical methods and computational tools have been elaborated for the automatic generation of reaction mechanisms in each of these fields. These computer codes are able to handle various sources of chemical kinetic and thermodynamic data and will be described in this chapter. We also describe the variety of data sources which are used to help quantify the parameters within developed mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson, R.: Kinetics and mechanisms of gas phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 86, 69–201 (1986)

    Article  CAS  Google Scholar 

  • Atkinson, R.: A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinet. 19, 799–828 (1987)

    Article  CAS  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 4, 1461–1738 (2004)

    Article  CAS  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: IUPAC Subcommittee: evaluated kinetic and photochemical data for atmospheric chemistry: Volume II—gas phase reactions of organic species. Atmos. Chem. Phys. 6, 3625–4055 (2006)

    Article  CAS  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III—gas phase reactions of inorganic halogens. Atmos. Chem. Phys. 7, 981–1191 (2007)

    Article  CAS  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J., Wallington, T.J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV—gas phase reactions of organic halogen species. Atmos. Chem. Phys. 8, 4141–4496 (2008)

    Article  CAS  Google Scholar 

  • Battin-Leclerc, F.: Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Prog. Energy Combust. Sci. 34, 440–498 (2008)

    Article  CAS  Google Scholar 

  • Battin-Leclerc, F., Glaude, P.A., Warth, V., Fournet, R., Scacchi, G., Côme, G.M.: Computer tools for modelling the chemical phenomena related to combustion. Chem. Eng. Sci. 55, 2883–2893 (2000)

    Article  CAS  Google Scholar 

  • Battin-Leclerc, F., Blurock, E., Simmie, J. (eds.): Development of Detailed Chemical Kinetic Models for Cleaner Combustion. Springer, Heidelberg (2013)

    Google Scholar 

  • Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, T., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data 21, 411–734 (1992)

    Article  CAS  Google Scholar 

  • Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, J.H., Hayman, G., Just, T.H., Kerr, J.A., Murrels, T., Pilling, M.J., Troe, J., Walker, B.F., Warnatz, J.: Summary table of evaluated kinetic data for combustion modeling—Supplement-1. Combust. Flame 98, 59–79 (1994)

    Article  CAS  Google Scholar 

  • Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling: Supplement II. J. Phys. Chem. Ref. Data 34, 757–1397 (2005)

    Article  CAS  Google Scholar 

  • Benson, S.W.: Thermochemical Kinetics, 2nd edn. Wiley, New York (1976)

    Google Scholar 

  • Biet, J., Hakka, M.H., Warth, V., Glaude, P.-A., Battin-Leclerc, F.: Experimental and modeling study of the low-temperature oxidation of large alkanes. Energy Fuels 22, 2258–2269 (2008)

    Article  CAS  Google Scholar 

  • Blurock, E.S.: Reaction: system for modeling chemical reactions. J. Chem. Inf. Comput. Sci. 35, 607–616 (1995)

    Article  CAS  Google Scholar 

  • Blurock, E.S.: Characterizing complex reaction mechanisms using machine learning clustering techniques. Int. J. Chem. Kinet. 36, 107–118 (2004a)

    Article  CAS  Google Scholar 

  • Blurock, E.S.: Detailed mechanism generation. 1. Generalized reactive properties as reaction class substructures. J. Chem. Inf. Comput. Sci. 44, 1336–1347 (2004b)

    Article  CAS  Google Scholar 

  • Blurock, E.S.: Detailed mechanism generation. 2. Aldehydes, ketones, and olefins. J. Chem. Inf. Comput. Sci. 44, 1348–1357 (2004c)

    Article  CAS  Google Scholar 

  • Blurock, E., Battin-Leclerc, F., Faravelli, T., Green, W.H.: Automatic generation of detailed mechanisms. In: Battin-Leclerc, F., Blurock, E., Simmie, J. (eds.) Development of Detailed Chemical Kinetic Models for Cleaner Combustion, pp. 59–92. Springer, Heidelberg (2013)

    Google Scholar 

  • Bounaceur, R., Warth, V., Glaude, P.A., Battin-Leclerc, F., Scacchi, G., Come, G.M., Faravelli, T., Ranzi, E.: Chemical lumping of mechanisms generated by computer—Application to the modeling of normal-butane oxidation. J. Chim. Phys. Phys. Chim. Biol. 93, 1472–1491 (1996)

    CAS  Google Scholar 

  • Buda, F., Bounaceur, R., Warth, V., Glaude, P.A., Fournet, R., Battin-Leclerc, F.: Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K. Combust. Flame 142, 170–186 (2005)

    Article  CAS  Google Scholar 

  • Burcat, A.: Thermochemical Data for Combustion Calculations. Springer, New York (1984)

    Google Scholar 

  • Burcat, A.: Thermodyanamic database. http://garfield.chem.elte.hu/Burcat/burcat.html

  • Burcat, A., Ruscic, B.: Third Millenium ideal gas and condensed phase thermochemical database for combustion with updates from Active Thermochemical Tables. Argonne National Laboratory report ANL-05/20 (2005)

    Google Scholar 

  • Chevalier, C., Warnatz, J., Melenk, H.: Automatic generation of reaction mechanisms for description of oxidation of higher hydrocarbons. Ber. Bunsenges. Phys. Chem. 94, 1362–1367 (1990)

    Article  CAS  Google Scholar 

  • Chinnick, S.J., Baulch, D.L., Ayscough, P.B.: An expert system for hydrocarbon pyrolysis reactions. Chemometr. Intell. Lab. Syst. 5, 39–52 (1988)

    Article  CAS  Google Scholar 

  • Dagaut, P., Cathonnet, M.: The ignition, oxidation, and combustion of kerosene: a review of experimental and kinetic modeling. Prog. Energy Combust. Sci. 32, 48–92 (2006)

    Article  CAS  Google Scholar 

  • Dagaut, P., Gail, S.: Chemical kinetic study of the effect of a biofuel additive on Jet-A1 combustion. J. Phys. Chem. A 111, 3992–4000 (2007)

    Article  CAS  Google Scholar 

  • de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002)

    Article  Google Scholar 

  • Feeley, R., Frenklach, M., Onsum, M., Russi, T., Arkin, A., Packard, A.: Model discrimination using data collaboration. J. Phys. Chem. A 110, 6803–6813 (2006)

    Article  CAS  Google Scholar 

  • Fish, D.J.: The automatic generation of reduced mechanisms for tropospheric chemistry modelling. Atmos. Environ. 34, 1563–1574 (2000)

    Article  CAS  Google Scholar 

  • Frenklach, M., Packard, A., Seiler, P., Feeley, R.: Collaborative data processing in developing predictive models of complex reaction systems. Int. J. Chem. Kinet. 36, 57–66 (2004)

    Article  CAS  Google Scholar 

  • Gery, M.W., Whitten, G.Z., Killus, J.P., Dodge, M.C.: A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. D94, 12925–12956 (1989)

    Article  Google Scholar 

  • Glaude, P.A., Battin-LeClerc, F., Fournet, R., Warth, V., Côme, G.M., Scacchi, G.: Construction and simplification of a model for the oxidation of alkanes. Combust. Flame 122, 451–462 (2000)

    Article  CAS  Google Scholar 

  • Glaude, P.A., Herbinet, O., Bax, S., Biet, J., Warth, V., Battin-Leclerc, F.: Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. Combust. Flame 157, 2035–2050 (2010)

    Article  CAS  Google Scholar 

  • Green, W.H.: Predictive kinetics: a new approach for the 21st century. In: Guy, B.M. (ed.) Advances in Chemical Engineering, vol. 32, pp. 1–50. Academic, Amsterdam (2007)

    Google Scholar 

  • Green, W.H., Barton, P.I., Bhattacharjee, B., Matheu, D.M., Schwer, D.A., Song, J., Sumathi, R., Carstensen, H.H., Dean, A.M., Grenda, J.M.: Computer construction of detailed chemical kinetic models for gas-phase reactors. Ind. Eng. Chem. Res. 40, 5362–5370 (2001)

    Article  CAS  Google Scholar 

  • Green, W.H., Allen, J.W., Buesser, B.A., Ashcraft, R.W., Beran, G.J., Class, C.A., Gao, C., Goldsmith, C.F., Harper, M.R., Murat Keceli, A.J., Magoon, G.R., Matheu, D.M., Merchant, S.S., Mo, J.D., Petway, S., Raman, S., Sharma, S., Song, J., Suleymanov, Y., Van Geem, K.M., Wen, J., West, R.H., Wong, A., Wong, H.-W., Yelvington, P.E., Yee, N., Yu, J.: RMG – Reaction Mechanism Generator v4.0.1. http://rmg.sourceforge.net/ (2013). Accessed March 2014

  • Grenda, J.M., Androulakis, I.P., Dean, A.M., Green, W.H.: Application of computational kinetic mechanism generation to model the autocatalytic pyrolysis of methane. Ind. Eng. Chem. Res. 42, 1000–1010 (2003)

    Article  CAS  Google Scholar 

  • Hakka, M.H., Bennadji, H., Biet, J., Yahyaoui, M., Sirjean, B., Warth, V., Coniglio, L., Herbinet, O., Glaude, P.A., Billaud, F., Battin-Leclerc, F.: Oxidation of methyl and ethyl butanoates. Int. J. Chem. Kinet. 42, 226–252 (2010)

    Article  CAS  Google Scholar 

  • Hansen, N., Harper, M.R., Green, W.H.: High-temperature oxidation chemistry of n-butanol—experiments in low-pressure premixed flames and detailed kinetic modeling. PCCP 13, 20262–20274 (2011)

    Article  CAS  Google Scholar 

  • Hansen, N., Merchant, S.S., Harper, M.R., Green, W.H.: The predictive capability of an automatically generated combustion chemistry mechanism: chemical structures of premixed iso-butanol flames. Combust. Flame 160, 2343–2351 (2013)

    Article  CAS  Google Scholar 

  • Harper, M.R., Van Geem, K.M., Pyl, S.P., Marin, G.B., Green, W.H.: Comprehensive reaction mechanism for n-butanol pyrolysis and combustion. Combust. Flame 158, 16–41 (2011)

    Article  CAS  Google Scholar 

  • Herbinet, O., Pitz, W.J., Westbrook, C.K.: Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust. Flame 154, 507–528 (2008)

    Article  CAS  Google Scholar 

  • Honnet, S., Seshadri, K., Niemann, U., Peters, N.: A surrogate fuel for kerosene. Proc. Combust. Inst. 32, 485–492 (2009)

    Article  CAS  Google Scholar 

  • IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation (2014) http://iupac.pole-ether.fr/

    Google Scholar 

  • Jalan, A., West, R.H., Green, W.H.: An extensible framework for capturing solvent effects in computer generated kinetic models. J. Phys. Chem. B 117, 2955–2970 (2013)

    Article  CAS  Google Scholar 

  • Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)

    Article  CAS  Google Scholar 

  • Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38(suppl 1), D355–D360 (2010)

    Article  CAS  Google Scholar 

  • Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Paley, S.M., Pellegrini-Toole, A.: The EcoCyc and MetaCyc databases. Nucleic Acids Res. 28, 56–59 (2000)

    Article  CAS  Google Scholar 

  • Kerdouci, J., Picquet-Varrault, B., Doussin, J.F.: Structure-activity relationship for the gas-phase reactions of NO3 radical with organic compounds: update and extension to aldehydes. Atmos. Environ. 84, 363–372 (2014)

    Article  CAS  Google Scholar 

  • Kirchner, F.: The chemical mechanism generation programme CHEMATA–Part 1: The programme and first applications. Atmos. Environ. 39, 1143–1159 (2005)

    Article  CAS  Google Scholar 

  • Kouri, T.M., Crabtree, J.D., Huynh, L., Dean, A.M., Mehta, D.P.: RCARM: Reaction classification using automated reaction mapping. Int. J. Chem. Kinet. 45, 125–139 (2013)

    Article  CAS  Google Scholar 

  • Kwok, E.S.C., Atkinson, R.: Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update. Atmos. Environ. 29, 1685–1695 (1995)

    Article  CAS  Google Scholar 

  • Li, K., Crittenden, J.: Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase advanced oxidation processes. Environ. Sci. Technol. 43, 2831–2837 (2009)

    Article  CAS  Google Scholar 

  • Liu, J.-W., Xiong, S.-W., Ma, X.-S., Li, P., Li, X.-Y.: Development and reduction of n-decane detailed combustion reaction mechanism. Tuijin Jishu/J. Propulsion Technol. 33, 64–68 (2012)

    Google Scholar 

  • Manion, J.A., Huie, R.E., Levin, R.D., Burgess Jr., D.R., Orkin, V.L., Tsang, W., McGivern, W.S., Hudgens, J.W., Knyazev, V.D., Atkinson, D.B., Chai, E., Tereza, A.M., Lin, C.-Y., Allison, T.C., Mallard, W.G., Westley, F., Herron, J.T., Hampson, R.F., Frizzell, D.H.: NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.7, Data Version 2013.03, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320. http://kinetics.nist.gov/ (2013)

  • Maria, G.: A review of algorithms and trends in kinetic model identification for chemical and biochemical systems. Chem. Biochem. Eng. Q. 18, 195–222 (2004)

    CAS  Google Scholar 

  • Matheu, D.M., Grenda, J.M.: A systematically generated, pressure-dependent mechanism for high-conversion ethane pyrolysis. 1. Pathways to the minor products. J. Phys. Chem. A 109, 5332–5342 (2005a)

    Article  CAS  Google Scholar 

  • Matheu, D.M., Grenda, J.M.: A systematically generated, pressure-dependent mechanism for high-conversion ethane pyrolysis. 2. Radical disproportionations, missing reaction families, and the consequences of pressure dependence. J. Phys. Chem. A 109, 5343–5351 (2005b)

    Article  CAS  Google Scholar 

  • Matheu, D.M., Dean, A.M., Grenda, J.M., Green, W.H.: Mechanism generation with integrated pressure dependence: a new model for methane pyrolysis. J. Phys. Chem. A 107, 8552–8565 (2003)

    Article  CAS  Google Scholar 

  • Mersin, I.E., Blurock, E.S., Soyhan, H.S., Konnov, A.A.: Hexadecane mechanisms: comparison of hand-generated and automatically generated with pathways. Fuel 115, 132–144 (2014)

    Article  CAS  Google Scholar 

  • Miller, J.A., Pilling, M.J., Troe, J.: Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proc. Combust. Inst. 30, 43–88 (2005)

    Article  Google Scholar 

  • Moreac, G., Blurock, E.S., Mauss, F.: Automatic generation of a detailed mechanism for the oxidation of n-decane. Combust. Sci. Technol. 178, 2025–2038 (2006)

    Article  CAS  Google Scholar 

  • Muller, C., Michel, V., Scacchi, G., Côme, G.M.: THERGAS: a computer program for the evaluation of thermochemical data of molecules and free radicals in the gas phase. Journal De Chimie Physique Et De Physico-chimie Biologique 92, 1154–1178 (1995)

    CAS  Google Scholar 

  • Németh, A., Vidóczy, T., Héberger, K., Kúti, Z., Wágner, J.: MECHGEN: Computer aided generation and reduction of reaction mechanisms. J. Chem. Inf. Comput. Sci. 42, 208–214 (2002)

    Article  Google Scholar 

  • Olm, C., Zsély, I.G., Pálvölgyi, R., Varga, T., Nagy, T., Curran, H.J., Turányi, T.: Comparison of the performance of several recent hydrogen combustion mechanisms. Combust. Flame 161, 2219–2234 (2014)

    Google Scholar 

  • Pierucci, S., Ranzi, E.: A review of features in current automatic generation software for hydrocarbon oxidation mechanisms. Comput. Chem. Eng. 32, 805–826 (2008)

    Article  CAS  Google Scholar 

  • Pilling, M.J.: From elementary reactions to evaluated chemical mechanisms for combustion models. Proc. Combust. Inst. 32, 27–44 (2009)

    Article  CAS  Google Scholar 

  • Pilling, M.J., Seakins, P.W.: Reaction Kinetics. Oxford University Press, Oxford (1995)

    Google Scholar 

  • PrIMe: Process Informatics Model. http://www.primekinetics.org/

  • Ramirez, H.P., Hadj-Ali, K., Dievart, P., Dayma, G., Togbe, C., Moreac, G., Dagaut, P.: Oxidation of commercial and surrogate bio-Diesel fuels (B30) in a jet-stirred reactor at elevated pressure: experimental and modeling kinetic study. Proc. Combust. Inst. 33, 375–382 (2011)

    Article  CAS  Google Scholar 

  • Rangarajan, S., Bhan, A., Daoutidis, P.: Rule-based generation of thermochemical routes to biomass conversion. Ind. Eng. Chem. Res. 49, 10459–10470 (2010)

    Article  CAS  Google Scholar 

  • Ranzi, E., Faravelli, T., Gaffuri, P., Sogaro, A.: Low-temperature combustion: automatic generation of primary oxidation reactions and lumping procedures. Combust. Flame 102, 179–192 (1995)

    Article  CAS  Google Scholar 

  • Ranzi, E., Dente, M., Goldaniga, A., Bozzano, G., Faravelli, T.: Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Prog. Energy Combust. Sci. 27, 99–139 (2001)

    Article  CAS  Google Scholar 

  • Ranzi, E., Frassoldati, A., Granata, S., Faravelli, T.: Wide-range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes. Ind. Eng. Chem. Res. 44, 5170–5183 (2004)

    Article  Google Scholar 

  • Ranzi, E., Frassoldati, A., Granata, S., Faravelli, T.: Wide-range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes. Ind. Eng. Chem. Res. 44, 5170–5183 (2005)

    Article  CAS  Google Scholar 

  • Rappoport, D., Galvin, C.J., Zubarev, D.Y., Aspuru-Guzik, A.: Complex chemical reaction networks from heuristics-aided quantum chemistry. J. Chem. Theory Comput. 10, 897–907 (2014)

    Article  CAS  Google Scholar 

  • REACTION\ANALYSIS: Software system for the manipulation of chemical information through statistics and machine learning. http://esblurock.info

  • Ritter, E.R., Bozzelli, J.W.: THERM: Thermodynamic property estimation for gas phase radicals and molecules. Int. J. Chem. Kinet. 23, 767–778 (1991)

    Article  CAS  Google Scholar 

  • Ruscic, B., Boggs, J.E., Burcat, A., Császár, A.G., Demaison, J., Janoschek, R., Martin, J.M.L., Morton, M.L., Rossi, M.J., Stanton, J.F., Szalay, P.G., Westmoreland, P.R., Zabel, F., Bérces, T.: IUPAC Critical Evaluation of Thermochemical Properties of Selected Radicals. Part I. J. Phys. Chem. Ref. Data 34, 573–656 (2003)

    Article  Google Scholar 

  • Rzhetsky, A., Iossifov, I., Koike, T., Krauthammer, M., Kra, P., Morris, M., Yu, H., Duboué, P.A., Weng, W., Wilbur, W.J., Hatzivassiloglou, V., Friedman, C.: GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. J. Biomed. Inf. 37, 43–53 (2004)

    Article  CAS  Google Scholar 

  • Saunders, S.M., Jenkin, M.E., Derwent, R.G., Pilling, M.J.: Protocol for the development of the master chemical mechanism, MCM V3: tropospheric degradation of non-aromatic VOC. Atmos. Chem. Phys. 3, 161–180 (2003a)

    Article  CAS  Google Scholar 

  • Saunders, S.M., Pascoe, S., Johnson, A.P., Pilling, M.J., Jenkin, M.E.: Development and preliminary test results of an expert system for the automatic generation of tropospheric VOC degradation mechanisms. Atmos. Environ. 37, 1723–1735 (2003b)

    Article  CAS  Google Scholar 

  • Seiler, P., Frenklach, M., Packard, A., Feeley, R.: Numerical approaches for collaborative data processing. Optim. Eng. 7, 459–478 (2006)

    Article  Google Scholar 

  • Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.C., Hutchison, C.A.: E-CELL: software environment for whole cell simulation. Bioinformatics 15, 72–84 (1999)

    Article  CAS  Google Scholar 

  • Van Geem, K.M., Reyniers, M.-F., Marin, G.B., Song, J., Green, W.H., Matheu, D.M.: Automatic reaction network generation using RMG for steam cracking of n-hexane. AIChE J. 52, 718–730 (2006)

    Article  Google Scholar 

  • Van Geem, K.M., Pyl, S.P., Marin, G.B., Harper, M.R., Green, W.H.: Accurate high-temperature reaction networks for alternative fuels: butanol isomers. Ind. Eng. Chem. Res. 49, 10399–10420 (2010)

    Article  Google Scholar 

  • Warth, V., Battin-Leclerc, F., Fournet, R., Glaude, P.A., Côme, G.M., Scacchi, G.: Computer based generation of reaction mechanisms for gas-phase oxidation. Comput. Chem. 24, 541–560 (2000)

    Article  CAS  Google Scholar 

  • Westbrook, C.K., Pitz, W.J., Curran, H.J.: Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines. J. Phys. Chem. A 110, 6912–6922 (2006)

    Article  CAS  Google Scholar 

  • Westbrook, C.K., Naik, C.V., Herbinet, O., Pitz, W.J., Mehl, M., Sarathy, S.M., Curran, H.J.: Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combust. Flame 158, 742–755 (2011)

    Article  CAS  Google Scholar 

  • Wiechert, W.: Modeling and simulation: tools for metabolic engineering. J. Biotechnol. 94, 37–63 (2002)

    Article  CAS  Google Scholar 

  • Yoneda, Y.: A computer program for the analysis, creation and estimation of generalised reactions: GRACE. Bull. Chem. Soc. Jpn. 52, 8–14 (1979)

    Article  CAS  Google Scholar 

  • Yuryev, A., Mulyukov, Z., Kotelnikova, E., Maslov, S., Egorov, S., Nikitin, A., Daraselia, N., Mazo, I.: Automatic pathway building in biological association networks. BMC Bioinform. 7, 171 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turányi, T., Tomlin, A.S. (2014). Mechanism Construction and the Sources of Data. In: Analysis of Kinetic Reaction Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44562-4_3

Download citation

Publish with us

Policies and ethics