Skip to main content

Reaction Kinetics Basics

  • Chapter
  • First Online:
Analysis of Kinetic Reaction Mechanisms

Abstract

This chapter provides an introduction to the basic concepts of reaction kinetics simulations. The level corresponds mainly to undergraduate teaching in chemistry and in process, chemical and mechanical engineering. However, some topics are discussed in more detail and depth in order to underpin the later chapters. The section “parameterising rate coefficients” contains several topics that are usually not present in textbooks. For example, all reaction kinetics textbooks discuss the pressure dependence of the rate coefficients of unimolecular reactions, but usually do not cover those of complex-forming bimolecular reactions. The chapter contains an undergraduate level introduction to basic simplification principles in reaction kinetics. The corresponding sections also discuss the handling of conserved properties in chemical kinetic systems and the lumping of reaction steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arányi, P., Tóth, J.: A full stochastic description of the Michaelis–Menten reaction for small systems. Acta Biochim. Biophys. Acad. Sci. Hung. 12, 375–388 (1977)

    Google Scholar 

  • Atkins, P., de Paula, J.: Atkins’ Physical Chemistry, 9th edn. Oxford University Press, Oxford (2009)

    Google Scholar 

  • Bamford, C.H., Tipper, C.F.H., Compton, R.G. (eds.): Theory of Kinetics. Elsevier, Amsterdam (1969)

    Google Scholar 

  • Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling: Supplement II. J. Phys. Chem. Ref. Data 34, 757–1397 (2005)

    Article  CAS  Google Scholar 

  • Belousov, B.P.: Периодически действующая реакция и ее механизм. Сборник рефератов по радиационной медицине 147, 145 (1959)

    Google Scholar 

  • Belousov, B.P.: A periodic reaction and its mechanism. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems. Wiley, New York (1985)

    Google Scholar 

  • Bodenstein, M.: Eine Theorie der photochemischen Reaktionsgeschwindigkeiten. Z. Phys. Chem. 85, 329–397 (1913)

    Google Scholar 

  • Bunker, D.L., Garrett, B., Kliendienst, T., Long III, G.S.: Discrete simulation methods in combustion kinetics. Combust. Flame 23, 373–379 (1974)

    Article  CAS  Google Scholar 

  • Burcat, A.: Thermochemical Data for Combustion Calculations. Springer, New York (1984)

    Google Scholar 

  • Burke, M., Chaos, M., Ju, Y., Dryer, F.L., Klippenstein, S.: Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 444–474 (2012)

    Article  CAS  Google Scholar 

  • Burke, M.P., Klippenstein, S.J., Harding, L.B.: A quantitative explanation for the apparent anomalous temperature dependence of OH + HO2 = H2O + O2 through multi-scale modeling. Proc. Combust. Inst. 34, 547–555 (2013)

    Article  CAS  Google Scholar 

  • Carstensen, H.H., Dean, A.M.: The kinetics of pressure-dependent reactions. In: Carr, R.W. (ed.) Modeling of Chemical Reactions, vol. 42, pp. 105–187. Amsterdam, Elsevier (2007)

    Chapter  Google Scholar 

  • De Avillez Pereira, R., Baulch, D., Pilling, M.J., Robertson, S.H., Zeng, G.: Temperature and pressure dependence of the multichannel rate coefficients for the CH3 + OH system. J. Phys. Chem. A 101, 9681–9693 (1997)

    Article  Google Scholar 

  • Drake, G.W.F. (ed.): Springer Handbook of Atomic, Molecular, and Optical Physics. Springer, Berlin (2005)

    Google Scholar 

  • Érdi, P., Lente, G.: Stochastic Chemical Kinetics: Theory and (Mostly) Systems Biological Applications. Springer, Heidelberg (2014)

    Book  Google Scholar 

  • Érdi, P., Tóth, J.: A kémiai reakció termodinamikájának sztochasztikus formulázásáról (On the stochiastic formulation of the thermodynamics of chemical reactions). A kémia újabb eredményei, vol. 41. Akadémiai Kiadó, Budapest (1976)

    Google Scholar 

  • Érdi, P., Tóth, J.: Mathematical Models of Chemical Reactions. Princeton University Press, Princeton (1989)

    Google Scholar 

  • Érdi, P., Sipos, T., Tóth, J.: Összetett kémiai reakciók sztochasztikus szimulálása számítógéppel (Stochiastic simulation of complex chemical reactions using computer). Magyar Kémiai Folyóirat 79, 97–108 (1973)

    Google Scholar 

  • Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Article  CAS  Google Scholar 

  • Field, R.J., Kőrös, E., Noyes, R.M.: Oscillations in chemical systems II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)

    Article  CAS  Google Scholar 

  • Gadewar, S.B., Doherty, M.F., Malone, M.F.: A systematic method for reaction invariants and mole balances for complex chemistries. Comput. Chem. Eng. 25, 1199–1217 (2001)

    Article  CAS  Google Scholar 

  • Gery, M.W., Whitten, G.Z., Killus, J.P., Dodge, M.C.: A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. D94, 12925–12956 (1989)

    Article  Google Scholar 

  • Gilbert, R.G., Luther, K., Troe, J.: Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constants. Berichte Bunsenges. Phys. Chem. 87, 169–177 (1983)

    Article  CAS  Google Scholar 

  • Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  CAS  Google Scholar 

  • Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  CAS  Google Scholar 

  • Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  CAS  Google Scholar 

  • Goos, E., Lendvay, G.: Calculation of molecular thermochemical data and their availability in databases. In: Battin-Leclerc, F., Simmie, J.M., Blurock, E. (eds.) Cleaner Combustion: Developing Detailed Chemical Kinetic Models, pp. 515–547. Springer, London (2013)

    Chapter  Google Scholar 

  • Hong, Z., Davidson, D.F., Hanson, R.K.: An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 158, 633–644 (2011)

    Article  CAS  Google Scholar 

  • Jasper, A.W., Klippenstein, S.J., Harding, L.B., Ruscic, B.: Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition. J. Phys. Chem. A 111, 3932–3950 (2007)

    Article  CAS  Google Scholar 

  • Konnov, A.A.: Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combust. Flame 152, 507–528 (2008)

    Article  CAS  Google Scholar 

  • Kraft, M., Wagner, W.: An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. J. Comput. Phys. 185, 139–157 (2003)

    Article  CAS  Google Scholar 

  • Kurtz, T.G.: The relationship between stochastic and deterministic models of chemical reactions. J. Chem. Phys. 57, 2976–2978 (1972)

    Article  CAS  Google Scholar 

  • Li, H., Cao, Y., Petzold, L.R., Gillespie, D.T.: Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol. Prog. 24, 56–61 (2008)

    Article  Google Scholar 

  • Lindemann, F.A., Arrhenius, S., Langmuir, I., Dhar, N.R., Perrin, J., McC. Lewis, W.C.: Discussion on “the radiation theory of chemical action”. Trans. Faraday Soc. 17, 598–606 (1922)

    Article  Google Scholar 

  • Metcalfe, W.K., Burke, S.M., Ahmed, S.S., Curran, H.J.: A hierarchical and comparative kinetic modeling study of C1−C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet. 45, 638–675 (2013)

    Article  CAS  Google Scholar 

  • Michael, J.V., Kumaran, S.S., Su, M.C., Lim, K.P.: Thermal rate constants over thirty orders of magnitude for the I + H2 reaction. Chem. Phys. Lett. 319, 99–106 (2000)

    Article  CAS  Google Scholar 

  • Ó Conaire, M.O., Curran, H.J., Simmie, J.M., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 36, 603–622 (2004)

    Article  Google Scholar 

  • Peters, N., Paczko, G., Seiser, R., Seshadri, K.: Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane. Combust. Flame 128, 38–59 (2002)

    Article  CAS  Google Scholar 

  • Pilling, M.J., Seakins, P.W.: Reaction Kinetics. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Raj, G.: Chemical Kinetics. Krishna Prakashan Media P Ltd, Meerut (2010)

    Google Scholar 

  • Rodiguin, N.M., Rodiguina, E.N.: Consecutive Chemical Reactions. Mathematical Analysis and Development. D. van Nostrand, Princeton (1964)

    Google Scholar 

  • Scott, S.K.: Chemical Chaos. International Series of Monographs on Chemistry, vol. 24. Clarendon Press, Oxford (1990)

    Google Scholar 

  • Stewart, P.H., Larson, C.W., Golden, D.M.: Pressure and temperature dependence of reactions proceeding via a bound complex. 2. Application to 2CH3 → C2H5 + H. Combust. Flame 75, 25–31 (1989)

    Article  CAS  Google Scholar 

  • Szabó, Z.G.: Kinetic characterization of complex reaction systems. In: Bamford, C.H., Tipper, C.F.H. (eds.) Comprehensive Chemical Kinetics, vol. 2, pp. 1–80. Amsterdam, Elsevier (1969)

    Google Scholar 

  • Tomlin, A.S., Pilling, M.J., Turányi, T., Merkin, J.H., Brindley, J.: Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses. Combust. Flame 91, 107–130 (1992)

    Article  CAS  Google Scholar 

  • Tomlin, A.S., Li, G.Y., Rabitz, H., Tóth, J.: A general-analysis of approximate nonlinear lumping in chemical-kinetics 2. Constrained lumping. J. Chem. Phys. 101, 1188–1201 (1994)

    Article  CAS  Google Scholar 

  • Tóth, J., Érdi, P.: A formális reakciókinetika modelljei, problémái és alkalmazásai (The models, problems and applications of formal reaction kinetics). A kémia újabb eredményei, vol. 41. Akadémiai Kiadó, Budapest (1978)

    Google Scholar 

  • Troe, J.: The thermal dissociation/recombination reaction of hydrogen peroxide H2O2(+M)=2OH(+M) III. Analysis and representation of the temperature and pressure dependence over wide ranges. Combust. Flame 158, 594–601 (2011)

    Article  CAS  Google Scholar 

  • Turányi, T.: Sensitivity analysis of complex kinetic systems.Tools and applications. J. Math. Chem. 5, 203–248 (1990)

    Article  Google Scholar 

  • Turányi, T., Györgyi, L., Field, R.J.: Analysis and simplification of the GTF model of the Belousov-Zhabotinsky reaction. J. Phys. Chem. 97, 1931–1941 (1993)

    Article  Google Scholar 

  • Vallabhajosyula, R.R., Chickarmane, V., Sauro, H.M.: Conservation analysis of large biochemical networks. Bioinformatics 22, 346–353 (2006)

    Article  CAS  Google Scholar 

  • Varga, T., Nagy, T., Olm, C., Zsély, I.G., Pálvölgyi, R., Valkó, É., Vincze, G., Cserháti, M., Curran, H.J., Turányi, T.: Optimization of a hydrogen combustion mechanism using both direct and indirect measurements. Proc. Combust. Inst. (2015, in press) http://dx.doi.org/10.1016/j.proci.2014.06.071

  • Venkatech, P.K., Chang, A.Y., Dean, A.M., Cohen, M.H., Carr, R.W.: Parameterization of pressure- and temperature-dependent kinetics in multiple well reactions. AIChE J. 43, 1331–1340 (1997)

    Article  Google Scholar 

  • Waage, P., Guldberg, C.M.: Studies concerning affinity. Forhandlinger: Videnskabs-Selskabet i Christiana 35 (1864)

    Google Scholar 

  • Warnatz, J., Maas, U., Dibble, R.W.: Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin (2006)

    Google Scholar 

  • Zádor, J., Taatjes, C.A., Fernandes, R.X.: Kinetics of elementary reactions in autoignition chemistry. Prog. Energy Combust. Sci. 37, 371 (2011)

    Article  Google Scholar 

  • Zhabotinsky, A.M.: Периодический процесс окисления малоновой кислоты растворе (исследование кинетики реакции Белоусова). Биофизика 9, 306–311 (1964)

    Google Scholar 

  • Zhang, P., Law, C.K.: A fitting formula for the falloff curves of unimolecular reactions. Int. J. Chem. Kinet. 41, 727–734 (2009)

    Article  CAS  Google Scholar 

  • Zhang, P., Law, C.K.: A fitting formula for the falloff curves of unimolecular reactions. II: Tunneling effects. Int. J. Chem. Kinet. 43, 31–42 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turányi, T., Tomlin, A.S. (2014). Reaction Kinetics Basics. In: Analysis of Kinetic Reaction Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44562-4_2

Download citation

Publish with us

Policies and ethics