Advertisement

Platinum Metals in Airborne Particulate Matter and Their Bioaccessibility

  • Clare L. S. WisemanEmail author
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Environmental concentrations of the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) have been steadily increasing, due largely to their use as catalysts in automotive catalytic converters to reduce pollutant emissions. Due mainly to earlier studies which reported that PGE are most likely to be emitted in a benign metallic form, the general assumption has been that the potential health impacts of environmental exposures to these elements are limited. Recent studies on the bioaccessibility of these elements post-emission, however, both in the environment and upon uptake by organisms, indicate that concerns associated with low dose, environmental exposures are indeed warranted. The purpose of this paper is to discuss the most recent evidence pertaining to the bioaccessibility and toxic potential of environmental exposures of PGE, particularly that in airborne particulate matter (PM), the most relevant source of exposures in humans. This review is, in part, an adaptation of an article that was published in Science of the Total Environment (Wiseman and Zereini 2009).

Keywords

Road Dust Platinum Group Element Catalytic Converter Traffic Site Simulated Lung Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. An Goossens A, Cattaert N, Nemery B, Boey L, De Graef E (2011) Occupational allergic contact dermatitis caused by rhodium solutions. Contact Dermatitis 64:158–161CrossRefGoogle Scholar
  2. Artelt S, Kock H, König HP, Levsen K, Rosner G (1999) Engine dynamometer experiments: platinum emissions from differently aged three-way catalytic converters. Atmos Environ 33:3559–3567CrossRefGoogle Scholar
  3. Artelt S, Levsen K, König HP, Rosner G (2000) Engine test bench experiments to determine platinum emissions from three-way catalytic converters. In: Zereini F, Alt F (eds) Anthropogenic platinum group element emissions their impact on man and environment. Springer-Verlag, Berlin, pp 33–44CrossRefGoogle Scholar
  4. Barbante C, Veysseyre A, Ferrari C, Van de Velde K, Morel C, Capodoglio G, Cescon P, Scarponi G, Boutron C (2001) Greenland snow evidence of large scale atmospheric contamination for platinum, palladium and rhodium. Environ Sci Tech 35:835–839CrossRefGoogle Scholar
  5. Bocca B, Caimi S, Smichowski P, Gomez D, Caroli S (2006) Monitoring Pt and Rh in urban aerosols from Buenos Aires, Argentina. Sci Total Environ 358:255–264CrossRefGoogle Scholar
  6. Bozlaker A, Spada NJ, Fraser MP, Chellam S (2014) Elemental characterization of PM2.5 and PM10 emitted from light duty vehicles in the Washburn Tunnel of Houston, Texas: release of rhodium, palladium, and platinum. Environ Sci Technol 48:54–62CrossRefGoogle Scholar
  7. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Rous AV, Holguin F, Hone Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378CrossRefGoogle Scholar
  8. Bruder B (2011) Löslichkeit von Platingruppenelementen (Pt, Pd, Rh) und Schwermetallen (As, Cd, Pb, Cr, Ni, Co und Cu) im Luftstaub (PM10, PM2,5 und PM1) in Anwesenheit von organischen Komplexbildnern. Master’s Thesis, Goethe Universität Frankfurt am Main, unpublishedGoogle Scholar
  9. Burnett RT, Smith-Doiron M, Stieb D, Cakmak S, Brook JR (1999) Effects of particulate and gaseous air pollution on cardiorespiratory hospitalizations. Arch Environ Health 54:130–139CrossRefGoogle Scholar
  10. Caroli S, Alimonti A, Petrucci F, Bocca B, Krachler M, Forastiere F, Sacerdote MT, Mallone S (2001) Assessment of exposure to platinum-group metals in urban children. Spectrochim Acta B 56:1241–1248CrossRefGoogle Scholar
  11. Colombo C, Monhemius AJ, Plant JA (2008a) The estimation of the bioavailabilities of platinum, palladium and rhodium in vehicle exhaust catalysts and road dusts using a physiologically based extraction test. Sci Total Environ 389:46–51CrossRefGoogle Scholar
  12. Colombo C, Monhemius AJ, Plant JA (2008b) Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotox Environ Safe 71:722–730CrossRefGoogle Scholar
  13. Costa DL, Dreher KL (1997) Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Persp 105:1053–1060CrossRefGoogle Scholar
  14. Cristaudo A, Sera F, Severino V, De Rocco M, Di Lella E, Picardo M (2005) Occupational hypersensitivity to metal salts, including platinum, in the secondary industry. Allergy 60:159–164CrossRefGoogle Scholar
  15. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) Association between air pollution and mortality in six US cities. N Eng J Med 329:1753–1759CrossRefGoogle Scholar
  16. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR (2012) Barriers in the developing brain and Neurotoxicology. NeuroToxicology 33:586–604CrossRefGoogle Scholar
  17. Fröhlich E, Roblegg E (2012) Models for oral uptake of nanoparticles in consumer products. Toxicology 291:10–17CrossRefGoogle Scholar
  18. Gagnon ZE, Newkirk C, Hicks S (2006) Impact of platinum group metals on the environment: a toxicological, genotoxic and analytical chemistry study. J Environ Sci Heal A 41:397–414CrossRefGoogle Scholar
  19. Gagnon ZE, Patel A (2007) Induction of metallothionein in chick embryos as a mechanism of tolerance to platinum group metal exposure. J Environ Sci Heal A 42:381–387CrossRefGoogle Scholar
  20. Gebel T, Lantzsch H, Pleßow K, Dunkelberg H (1997) Genotoxicity of platinum and palladium compounds in human and bacterial cells. Mutat Res-Gen Tox En 389:183–190CrossRefGoogle Scholar
  21. Gomez B, Palacios MA, Gomez M, Sanchez JL, Morrison G, Rauch S, McLeod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Zischka M, Petterson C, Wass U (2002) Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Sci Total Environ 299:1–19CrossRefGoogle Scholar
  22. IARC (International Agency for Research on Cancer) (1981) Some antineoplastic and immunosuppressive agents: summary of data reported and evaluation. IARC monographs on the evaluation of carcinogenic risks to humans, vol 26. http://monographs.iarc.fr/ENG/Monographs/vol1-42/mono26.pdf. Accessed 10 June 2014
  23. Iavicoli I, Bocca B, Petrucci F, Senofonte O, Carelli G, Alimonti A, Caroli S (2004) Biomonitoring of traffic police officers exposed to airborne platinum. Occup Environ Med 61:636–639CrossRefGoogle Scholar
  24. Iavicoli I, Bocca B, Carelli G, Caroli S, Caimi S, Alimonti A, Fontana L (2007) Biomonitoring of tram drivers exposed to airborne platinum, rhodium and palladium. Int Arch Occup Environ Health 81:109–114CrossRefGoogle Scholar
  25. Iavicoli I, Leso V, Fontana L, Marinaccio A, Bergamaschi A, Calabrese EJ (2014) The effects of rhodium on the renal function of female Wistar rats. Chemosphere 104:120–125CrossRefGoogle Scholar
  26. Jarvis K, Parry S, Piper M (2001) Temporal and spatial studies of autocatalyst-derived platinum, rhodium, and palladium and selected vehicle-derived trace elements in the environment. Environ Sci Technol 35:1031–1036CrossRefGoogle Scholar
  27. Matthey Johnson (2013) Platinum- annual report. Johnson Matthey, London, p 104Google Scholar
  28. Kanitsar K, Koellensperger G, Hann S, Limbeck A, Puxbaum H, Stingeder G (2003) Determination of Pt, Pd and Rh by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in size-classified urban aerosol samples. J Anal At Spectrom 18:239–246CrossRefGoogle Scholar
  29. Lustig S, Zang S, Beck W, Schramel P (1998) Dissolution of metallic platinum as water soluble species by naturally occurring complexing agents. Microchim Acta 129:189–194CrossRefGoogle Scholar
  30. Makri A, Goveia M, Balbus J, Parkin R (2004) Children’s susceptibility to chemicals: a review by developmental stage. J Toxicol Environ Health B 7:417–435CrossRefGoogle Scholar
  31. Marzano C, Bettio F, Baccichetti F, Trevisan A, Giovagnini L, Fregona D (2004) Antitumor activity of a new platinum(II) complex with low nephrotoxicity and genotoxicity. Chem Biol Interact 148:37–48CrossRefGoogle Scholar
  32. Merget R, Rosner G (2001) Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters. Sci Total Environ 270:165–173CrossRefGoogle Scholar
  33. Merget R, Sander I, Van Kampen V, Raulf-Heimsoth M, Ulmer H-M, Kulzer R, Bruening T (2010) Occupational immediate-type asthma and rhinitis due to rhodium salts. Am J Ind Med 53:42–46Google Scholar
  34. Migliore L, Frenzilli G, Nesti C, Fortaner S, Sabbioni E (2002) Cytogenic and oxidative damage induced in human lymphocytes by platinum, rhodium and palladium compounds. Mutagenesis 17:411–417CrossRefGoogle Scholar
  35. Moldovan M, Palacios MA, Gomez MM, Morrison G, Rauch S, McLeod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Zischka M, Pettersson C, Wass U, Luna M, Saenz JC, Santamaría J (2002) Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Sci Total Environ 296:199–208CrossRefGoogle Scholar
  36. Moore W, Hysell D, Crocker W, Stara J (1975) Biological fate of a single administration of 191Pt in rats following different routes of exposure. Environ Res 9:152–158CrossRefGoogle Scholar
  37. Newkirk CE, Gagnon ZE, Pavel Sizemore IE (2014) Comparative study of hematological responses to platinum group metals, antimony and silver nanoparticles in animal models. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:269–280CrossRefGoogle Scholar
  38. Orion E, Matz H, Wolf R (2003) Palladium allergy in an Israeli contact dermatitis clinic. Contact Dermatitis 49:216–217CrossRefGoogle Scholar
  39. Park JD, Lui Y, Klaassen CD (2001) Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology 163:93–100CrossRefGoogle Scholar
  40. Pino A, Amato A, Alimonti A, Mattei D, Bocca B (2012) Human biomonitoring for metals in Italian urban adolescents: Data from Latium Region. Int J Hyg Environ Health 215:185–190CrossRefGoogle Scholar
  41. Rauch S, Lu M, Morrison GM (2001) Heterogeneity of platinum group metals in airborne particles. Environ Sci Technol 35:595–599CrossRefGoogle Scholar
  42. Rauch S, Hemond HF, Peucker-Ehrenbrink B, Ek KH, Morrison GM (2005) Platinum group element concentrations and osmium isotopic composition in urban airborne particles from Boston, Massachusetts. Environ Sci Technol 39:9464–9470CrossRefGoogle Scholar
  43. Rauch S, Peucker-Ehrenbrink B, Molina LT, Molina MJ, Ramos R, Hemond H (2006) Platinum group elements in airborne particles in Mexico City. Environ Sci Technol 40:7554–7560CrossRefGoogle Scholar
  44. Santucci B, Valenzano C, de Rocco M, Cristaudo A (2000) Platinum in the environment: frequency of reactions to platinum-group elements in patients with dermatitis and urticaria. Contact Dermatitis 43:333–338CrossRefGoogle Scholar
  45. Schierl R (2000) Environmental monitoring of platinum in air and urine. Microchem J 67:245–248CrossRefGoogle Scholar
  46. Schlögl R, Indlekofer G, Oelhafen P (1987) Mikropartikelemissionen von Verbrennungsmotoren mit Abgasreinigung, Röntgen-Photoelektronenspektroskopie in der Umweltanalytik. Angew Chem 99:312–322CrossRefGoogle Scholar
  47. Schmid M, Zimmermann S, Krug HF, Sures B (2007) Influence of platinum, palladium and rhodium as compared with cadmium, nickel and chromium on cell viability and oxidative stress in human bronchial epithelial cells. Environ Int 33:385–390CrossRefGoogle Scholar
  48. Sen IS, Peucker-Ehrenbrink B, Geboy N (2013) Complex anthropogenic sources of platinum group elements in aerosols on Cape Cod, USA. Environ Sci Technol 47:10188–10196CrossRefGoogle Scholar
  49. Turner A, Price S (2008) Bioaccessibility of platinum group elements in automotive catalytic converter particulates. Environ Sci Technol 42:9443–9448CrossRefGoogle Scholar
  50. Watsky KL (2007) Occupational allergic contact dermatitis to platinum, palladium and gold. Contact Dermatitis 57:382–383CrossRefGoogle Scholar
  51. Whiteley JD, Murray F (2003) Anthropogenic platinum group element (Pt, Pd and Rh) concentrations in road dusts and roadside soils from Perth, Western Australia. Sci Total Environ 317:121–135CrossRefGoogle Scholar
  52. Wiseman CLS, Zereini F (2009) Airborne particulate matter, platinum group elements and human health: a review of recent evidence. Sci Total Environ 407:2493–2500CrossRefGoogle Scholar
  53. Wiseman CLS, Zereini F (2014) Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos Environ 89:282–289CrossRefGoogle Scholar
  54. Wood SA (1996) The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V). Ore Geol Rev 11:1–31CrossRefGoogle Scholar
  55. Zereini F, Skerstupp B, Alt F, Helmers E, Urban H (1997) Geochemical behaviour of platinum-group elements (PGE) in particulate emissions by automobile exhaust catalysts: experimental results and environmental investigations. Sci Total Environ 206:137–146CrossRefGoogle Scholar
  56. Zereini F, Wiseman C, Alt F, Messerschmidt J, Müller J, Urban H (2001) Platinum and rhodium concentrations in airborne particulate matter in Germany from 1988 to 1998. Environ Sci Technol 35:1996–2000CrossRefGoogle Scholar
  57. Zereini F, Alt F, Messerschmidt J, von Bohlen A, Liebl K, Püttmann W (2004) Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main, Germany. Environ Sci Technol 38:1686–1692CrossRefGoogle Scholar
  58. Zereini F, Wiseman C, Püttmann W (2007) Changes in palladium, platinum and rhodium concentrations and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ Sci Technol 41:451–456CrossRefGoogle Scholar
  59. Zereini F, Alsenz H, Wiseman CLS, Püttmann W, Reimer E, Schleyer R, Bieber E, Wallasch M (2012a) Platinum group elements (Pt, Pd, Rh) in airborne particulate matter in rural versus urban areas of Germany: concentrations and spatial patterns of distribution. Sci Total Environ 416:261–268CrossRefGoogle Scholar
  60. Zereini F, Wiseman CLS, Püttmann W (2012b) In vitro investigations of platinum, palladium, and rhodium mobility in urban airborne particulate matter (PM10, PM2.5, and PM1) using simulated lung fluids. Environ Sci Technol 46:10326–10333Google Scholar
  61. Zimmermann S, Menzel CM, Stüben D, Taraschewski H, Sures B (2003) Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents. Environ Pollut 124:1–5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of the Environment, Earth Sciences CentreUniversity of TorontoTorontoCanada

Personalised recommendations