Advertisement

Field Studies on PGE in Aquatic Ecosystems

  • Nadine RuchterEmail author
  • Sonja Zimmermann
  • Bernd Sures
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Aquatic ecosystems can be considered as an important sink of platinum group elements. Different sources, like road runoff or industrial effluents are directly discharged into aquatic ecosystems. This article summarizes the recent knowledge on PGE (mainly Pt, Pd, and Rh) in aquatic ecosystems. It analyzes different routes into freshwater and saltwater systems, and summarizes the concentrations in the relevant matrices like water, sediments and biota. Results of our literature analysis show, that PGE can be detected in all matrices analyzed originating from all aquatic ecosystems investigated. Several studies further indicate that concentrations are still rising. It is further evident, that there is still a lack of data concerning the bioavailability of all PGE for aquatic plants and animals and that there is still a need of well performed and documented field studies.

Keywords

Zebra Mussel Platinum Group Element Urban River Road Runoff Pomphorhynchus Laevis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anbar A, Wasserburg G, Papnastassiou D, Andersson PS (1996) Iridium in natural waters. Science 273:1524–1528CrossRefGoogle Scholar
  2. Balcerzak M (2011) Methods for the determination of platinum group elements in environmental and biological materials: A review. Crit Rev Environ Sci Technol 41:214–235Google Scholar
  3. Bencs L, Ravindra K, Van Grieken R (2003) Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters. Spectrochim Acta Part B 58:1723–1755CrossRefGoogle Scholar
  4. Bonanno G (2011) Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol Environ Saf 74:1057–1064CrossRefGoogle Scholar
  5. Cobelo-García A, López-Sánchez DE, Almécija C, Santos-Echeandía J (2013) Behavior of platinum during estuarine mixing (Pontevedra Ria, NW Iberian Peninsula). Mar Chem 150:11–18CrossRefGoogle Scholar
  6. Cobelo-García A, Neira P, Mil-Homens M, Caetano M (2011) Evaluation of the contamination of platinum in estuarine and coastal sediments (Tagus Estuary and Prodelta, Portugal). Mar Pollut Bull 62:646–650CrossRefGoogle Scholar
  7. Colodner DC, Boyle EA, Edmond JM (1993) Determination of rhenium and platinum in natural waters and sediments, and iridium in sediments by flow injection isotope dilution inductively coupled plasma mass spectrometry. Anal Chem 65:1419–1425CrossRefGoogle Scholar
  8. De Vos E, Edwards S, McDonald I, Wray D, Carey P (2002) A baseline survey of the distribution and origin of platinum group elements in contemporary fluvial sediments of the Kentish Stour. England Appl Geochem 17:1115–1121CrossRefGoogle Scholar
  9. Eller R, Alt F, Tölg G, Tobschall HJ (1989) An efficient combined procedure for the extreme trace analysis of gold, platinum, palladium and rhodium with the aid of graphite furnace atomic absorption spectrometry and total-reflection X-ray fluorescence analysis. Fresenius Z Anal Chem 334:723–739CrossRefGoogle Scholar
  10. Essumang D (2008) Bioaccumulation of platinum group metals in dolphins, Stenella sp., caught off Ghana. Afr J Aquat Sci 33:255–259CrossRefGoogle Scholar
  11. Essumang D, Adokoh C (2011) Deposition of platinum-group metals in sediment and water bodies along the coastal belt of Ghana. Maejo Int J Sci Technol 5:331–349Google Scholar
  12. Essumang DK, Dodoo DK, Adokoh CK, Sam A, Doe NG (2008) Bioaccumulation of platinum group metals on some fish species (Oreochromis niloticus, Penaeus laspisulcates, Scylla serrate, Galaxias brevipinnis and Mollusc) in the Pra estuary of Ghana. Toxicol Environ Chem 90:625–638CrossRefGoogle Scholar
  13. Haus N, Zimmermann S, Sures B (2010) Precious metals in urban aquatic systems: platinum, palladium and rhodium: sources, occurrence, bioavailability and effects. In: Fatta-Kasinos D, Bester K, Kümmerer K (eds) Xenobiotics in the urban water cycle mass flows, processes, mitigation and treatment strategies. Springer, The Netherlands, pp 73–86CrossRefGoogle Scholar
  14. Haus N, Zimmermann S, Wiegand J, Sures B (2007) Occurrence of platinum and additional traffic related heavy metals in sediments and biota. Chemosphere 66:619–629CrossRefGoogle Scholar
  15. Hodge V, Stallard M, Koide M, Goldberg ED (1986) Determination of platinum and iridium in marine waters, sediments, and organisms. Anal Chem 58:616–620CrossRefGoogle Scholar
  16. Hodge VF, Stallard M, Koide M, Goldberg ED (1985) Platinum and the platinum anomaly in the marine environment. Earth Planet Sci Lett 72:158–162CrossRefGoogle Scholar
  17. Hoppstock K, Alt F (2000) Voltammetric determination of ultratrace platinum and rhodium in biological and environmental samples. In: Zereini F, Alt F (eds) Anthropogenic platinum-group element emissions. Springer, New York, pp 146–154Google Scholar
  18. IWW (2004) Untersuchungen zum Eintrag von Platingruppenelementen verschiedener Emittenten in Oberflächengewässer des Landes Nordrhein-Westfalen. Rheinisch-Westfälisches Institut Wasserforschung. Im Auftrag des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen; Aktenzeichen IV-9-042 529 AbschlussberichtGoogle Scholar
  19. Jackson MT, Sampson J, Prichard HM (2007) Platinum and palladium variations through the urban environment: evidence from 11 sample types from Sheffield. UK Sci Total Environ 385:117–131CrossRefGoogle Scholar
  20. Koide M, Stallard M, Hodge V, Goldberg ED (1986) Preliminary studies on the marine chemistry of ruthenium. Netherlands J Sea Res 20:163–166CrossRefGoogle Scholar
  21. Lee DS (1983) Palladium and nickel in north-east Pacific waters. Nature 305:47–48CrossRefGoogle Scholar
  22. Locatelli C (2011) Catalytic-adsorptive stripping voltammetric determination of ultra-trace iridium(III). Application to fresh- and sea-water. Talanta 85:546–550CrossRefGoogle Scholar
  23. Moldovan M, Gomez MM, Palacios MA, Gómez M (2003) On-line preconcentration of palladium on alumina microcolumns and determination in urban waters by inductively coupled plasma mass spectrometry. Anal Chim Acta 478:209–217CrossRefGoogle Scholar
  24. Moldovan M, Rauch S, Gomez M, Palacios MA, Morrison GM (2001) Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellus aquaticus. Water Res 35:4175–4183CrossRefGoogle Scholar
  25. Monticelli D, Carugati G, Castelletti A, Recchia S, Dossi C (2010) Design and development of a low cost, high performance UV digester prototype: application to the determination of trace elements by stripping voltammetry. Microchem J 95:158–163CrossRefGoogle Scholar
  26. Obata H, Yoshida T, Ogawa H (2006) Determination of picomolar levels of platinum in estuarine waters: a comparison of cathodic stripping voltammetry and isotope dilution-inductively coupled plasma mass spectrometry. Anal Chim Acta 580:32–38CrossRefGoogle Scholar
  27. Odiyo JO, Bapela HM, Mugwedi R, Chimuka L (2005) Metals in environmental media: A study of trace and platinum group metals in Thohoyandou, South Africa. Water SA 31:581–588Google Scholar
  28. Pratt C, Lottermoser BG (2007) Mobilisation of traffic-derived trace metals from road corridors into coastal stream and estuarine sediments, Cairns, northern Australia. Environ Geol 52:437–448CrossRefGoogle Scholar
  29. Prichard H, Jackson M, Sampson J (2008) Dispersal and accumulation of Pt, Pd and Rh derived from a roundabout in Sheffield (UK): from stream to tidal estuary. Sci Total Environ 401:90–99CrossRefGoogle Scholar
  30. Rauch S, Hemond HF (2003) Sediment-based evidence of platinum concentration changes in an urban lake near Boston, Massachusetts. Environ Sci Technol 37:3283–3288CrossRefGoogle Scholar
  31. Rauch S, Hemond HF, Peucker-Ehrenbrink B, Section E (2004) Recent changes in platinum group element concentrations and osmium isotopic composition in sediments from an urban lake. Environ Sci Technol 38:396–402CrossRefGoogle Scholar
  32. Rauch S, Morrison GMM (1999) Platinum uptake by the freshwater isopod Asellus aquaticus in urban rivers. Sci Total Environ 235:261–268CrossRefGoogle Scholar
  33. Ruchter N (2012) Ecotoxicology of traffic related platinum in the freshwater environment. Phd thesis, University of Duisburg-EssenGoogle Scholar
  34. Sures B, Thielen F, Baska F, Messerschmidt J, Bohlen VA (2005) The intestinal parasite Pomphorhynchus laevis as a sensitive accumulation indicator for the platinum group metals Pt, Pd, and Rh. Environ Res 98:83–88CrossRefGoogle Scholar
  35. Terashima S, Katayama H, Itoh S (1993) Geochemical behavior of Pt and Pd in coastal marine sediments, southeastern margin of the Japan Sea. Appl Geochem 8:265–271CrossRefGoogle Scholar
  36. Tuit CB, Ravizza GE, Bothner MH (2000) Anthropogenic platinum and palladium in the sediments of Boston harbor. Environ Sci Technol 34:927–932CrossRefGoogle Scholar
  37. Van den Berg CMG, Jacinto GS (1988) The determination of platinum in sea water by adsorptive cathodic stripping voltammetry. Anal Chim Acta 211:129–139CrossRefGoogle Scholar
  38. Wei C, Morrison GM (1994) Platinum in road dusts and urban river sediments. Sci Total Environ 147:169–174CrossRefGoogle Scholar
  39. Williams G, Marcantonio F, Turekian KK (1997) The behavior of natural and anthropogenic osmium in Long Island Sound, an urban estuary in the eastern U.S. Earth Planet Sci Lett 148:341–347CrossRefGoogle Scholar
  40. Zhong L-F, Yan W, L, J, Tu X-L, Liu B-M, Xia Z (2012) Pt and Pd in sediments from the Pearl River Estuary, South China: background levels, distribution, and source. Environ Sci Pollut Res Int 19:1305–1314Google Scholar
  41. Zimmermann S, Alt F, Messerschmidt J, von Bohlen A, Taraschewski H, Sures B (2002) Biological availability of traffic-related platinum-group elements (palladium, platinum, and rhodium) and other metals to the zebra mussel (Dreissena polymorpha) in water containing road dust. Environ Toxicol Chem 21:2713–2718CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Aquatic Ecology and Centre for Water and Environmental Research (ZWU)University of Duisburg-EssenEssenGermany

Personalised recommendations