Monitoring of Platinum Group Element Deposition by Bryophytes

  • H. G. ZechmeisterEmail author
  • Stephan Hann
  • Gunda Koellensperger
Part of the Environmental Science and Engineering book series (ESE)


At first the book chapter gives a short introduction in the mechanism of uptake and retention of PGEs by bryophytes. Two general methods of biomonitoring (active and passive methods) are described by short examples. An extensive description of the analysis of moss material is given and pitfalls within the analytical process are highlighted. A series of examples and results from monitoring of PGEs by bryophytes are given, however the range of application is rather small up to date. Results from background areas, traffic sites and urban/industrial sites are show, ranging from 0.01 ng Pt/g dryweight in remote areas to 41.5 ng Pt/g dryweight in a traffic tunnel. Only in a few studies Pd and Rh were analysed too. The moss method is comparable credible and cheap in costs and probably the best biomonitoring method for the detection of atmspheric PGE deposition.


Background values Bryophytes Pt Pd Rh Traffic 


  1. Ayrault S, Li C, Gaudry A (2006) Biomonitoring of Pt and Pd with mosses. In: Zereini F, Alt F (eds) Palladium emissions in the environment. Springer, Heidelberg p, pp 525–536CrossRefGoogle Scholar
  2. Balcerzak M (2011) Methods for the determination of platinum group elements in environmental and biological materials: a review. Crit Rev Anal Chem 41(3):214–235CrossRefGoogle Scholar
  3. Barbante C, Cozzi G, Capodaglio G, Van Velde KD, Ferrari C, Veysseyre A, Boutron CF et al (1999) Determination of Rh, Pd, and Pt in polar and alpine snow and ice by double-focusing ICPMS with microconcentric nebulization. Anal Chem 71(19):4125–4133CrossRefGoogle Scholar
  4. Barefoot RR, Van Loon JC (1999) Recent advances in the determination of the platinum group elements and gold. Talanta 49(1):1–14CrossRefGoogle Scholar
  5. Bates JW (1992) Mineral nutrition acquisition and retention by bryophytes. J Bryol 17:223–240CrossRefGoogle Scholar
  6. Bates JW, Farmer A (1992) Bryophytes and lichens in a changing environment. Clarendon Press, OxfordGoogle Scholar
  7. Beccaloni E, Coccia AM, Musmeci L, Stacul E, Ziemacki G (2005) Chemical and microbial characterization of indigenous topsoil and mosses in green urban areas of Rome. Microchem J 79:271–289CrossRefGoogle Scholar
  8. Bencs L, Ravindra K, Van Grieken R (2003) Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters. Spectrochim Acta Part B At Spectrosc 58(10):1723–1755CrossRefGoogle Scholar
  9. Brown DH, Bates JW (1990) Bryophytes and nutrient cycling. Bot J Linn Soc 104:129–147CrossRefGoogle Scholar
  10. Cyprien M, Barbaste M, Masson P (2008) Comparison of open digestion methods and selection of internal standards for the determination of Rh, Pd and Pt in plant samples by ICP-MS. Intern J Environ Anal Chem 88:525–537CrossRefGoogle Scholar
  11. Djingova R, Kovacheva P, Wagner G, Markert B (2003) Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci Total Environ 308:235–246CrossRefGoogle Scholar
  12. Gjengedahl E, Steinnes E (1990) Uptake of metal ions in moss from artificial precipitation. Environ Monit Assess 14:77–87CrossRefGoogle Scholar
  13. Glime JM (2009) Bryophyte ecology. Physiological Ecology, vol 1. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Accessed 28 Aug 2013
  14. Hann S, Koellensperger G, Kanitsar K, Stingeder G (2001) ICP-SFMS determination of palladium using IDMS in combination with on-line and off-line matrix separation. J Anal At Spectrom 16(9):1057–1063CrossRefGoogle Scholar
  15. Harmens H, Ilyin I, Mills G, Aboal JR, Alber R, Blum O, Carballeira A, Coşkun M, De Temmerman L, Fernnandez JA, Figuera R, Frontasevya M, Godzik B, Goltsova N, Jeran Z, Korzewka S, Kubin E, Kvietkus K, Leblond S, Liiv S, Magnusson SH, Maňkovská B, Nikodemus O, Pesch R, Poikolainen J, Radnovic D, Rühling A, Santamaría J, Schröder W, Spiric Z, Stafilov T, Steinnes E, Suchara I, Tabors G, Thöni L, Turcsanyi G, Yurukova L, Zechmeister HG (2012) Country-specific correlations across Europe between modelled atmospheric cadmium and lead depositon and concentrations in mosses. Environ Pollut 166:1–9CrossRefGoogle Scholar
  16. Jarvis I, Totland MM, Jarvis KE (1997) Assessment of dowex 1-X8 based anion-exchange procedures for the separation and determination of ruthenium, rhodium, palladium, iridium, platinum and gold in geological samples by inductively coupled plasma mass spectrometry. Analyst 122(1):19–26CrossRefGoogle Scholar
  17. Kan SF, Tanner PA (2004) Determination of platinum in roadside dust samples by dynamic reaction cell-inductively coupled plasma-mass spectrometry. J Anal At Spectrom 19(5):639–643CrossRefGoogle Scholar
  18. Kanitsar K, Koellensperger G, Hann S, Limbeck A, Puxbaum H, Stingeder G (2003) Determination of Pt, Pd and Rh by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in size-classified urban aerosol samples. J Anal At Spectrom 18(3):239–246CrossRefGoogle Scholar
  19. Köllensperger G, Hann S, Stingeder G (2000) Determination of Rh, Pd and Pt in environmental silica containing matrices: Capabilities and limitations of ICP-SFMS. J Anal At Spectrom 15(12):1553–1557CrossRefGoogle Scholar
  20. Krachler M, Alimonti A, Petrucci F, Irgolic KJ, Forastiere F, Caroli S (1998) Analytical problems in the determination of platinum-group metals in urine by quadrupole and magnetic sector field inductively coupled plasma mass spectrometry. Anal Chim Acta 363(1):1–10CrossRefGoogle Scholar
  21. Markert BA, Breure AM, Zechmeister HG (eds) (2003) Bioindicators / Biomonitors (principles, assessment, concepts). Elsevier, AmsterdamGoogle Scholar
  22. Moldovan M (2007) Origin and fate of platinum group elements in the environment. Anal Bioanal Chem 388(3):537–540CrossRefGoogle Scholar
  23. Müller M, Heumann KG (2000) Isotope dilution inductively coupled plasma quadrupole mass spectrometry in connection with a Chromatographic separation for ultra trace determinations of platinum group elements (Pt, Pd, Ru, Ir) in environmental samples. Fresenius’ J Anal Chem 368(1):109–115CrossRefGoogle Scholar
  24. Niemelä M, Piispanen J, Poikolainen J, Perämäki P (2007) Preliminary study of the use of terrestrial moss (Pleurozium schreberi) for biomonitoring traffic-related Pt and Rh deposition. Arch Environ Contam Toxicol 52:347–354CrossRefGoogle Scholar
  25. Niskavaara H, Kontas E, Reimann C (2004) Regional distribution and sources of Au, Pd and Pt in moss and O-, B- and C-horizon podzol samples in the European Arctic. Geochem: Explor Environ Anal 4:143–159Google Scholar
  26. Pakarinen P, Rinne RJK (1979) Growth rates and heavy metal concentrations of five moss species in paludified spruce forests. Lindbergia 5:77–83Google Scholar
  27. Perry BJ, Barefoot RR, Van Loon JC (1995) Inductively coupled plasma mass spectrometry for the determination of platinum group elements and gold. Trends Anal Chem 14(8):388–397CrossRefGoogle Scholar
  28. Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12CrossRefGoogle Scholar
  29. Rehkämper M, Halliday AN (1997) Development and application of new ion-exchange techniques for the separation of the platinum group and other siderophile elements from geological samples. Talanta 44(4):663–672CrossRefGoogle Scholar
  30. Reimann C, Arnoldussen A, Boyd R, Finne TE, Nordgulen Ø, Volden T, Englmaier P (2006) The influence of a city on element contents of a terrestrial moss (Hylocomium splendens). Sci Total Environ 369:419–432CrossRefGoogle Scholar
  31. Rodushkin I, Engström E, Stenberg A, Baxter DC (2004) Determination of low-abundance elements at ultra-trace levels in urine and serum by inductively coupled plasma-sector field mass spectrometry. Anal Bioanal Chem 380(2):247–257CrossRefGoogle Scholar
  32. Rudolph E, Limbeck A, Hann S (2006) Novel matrix separation - On-line pre-concentration procedure for accurate quantification of palladium in environmental samples by isotope dilution inductively coupled plasma sector field mass spectrometry. J Anal At Spectrom 21(11):1287–1293CrossRefGoogle Scholar
  33. Rűhling Å, Tyler G (1970) Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.) Br. et Sch. Oikos 21:92–97CrossRefGoogle Scholar
  34. Sari A, Mendil D, Tuzen M, Soylak M (2009) Biosorption of palladium(II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: Equilibrium, kinetic and thermodynamic studies. J Hazard Mater 162:874–879CrossRefGoogle Scholar
  35. Smith AJE (1983) Bryophyte ecology. Chapman and Hall, LondonGoogle Scholar
  36. Steinnes E, Berg T, Uggerud H, Vadset M (2007) Atmosfærisk nedfall av tungmetaller I Norge. Landsomfattende undersøkelsei 2005. NTU, Norway, TA-2241/2007Google Scholar
  37. Vanderpoorten A, Goffinet B (2009) Introduction to bryophytes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. Whiteley JD, Murray F (2003) Anthropogenic platinum group element (Pt, Pd and Rh) concentrations in road dusts and roadside soils from Perth, Western Australia. Sci Total Environ 317(1–3):121–135CrossRefGoogle Scholar
  39. Yi YV, Masuda A (1996) Simultaneous Determination of Ruthenium, Palladium, Iridium, and Platinum at Ultratrace Levels by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry in Geological Samples. Anal Chem 68(8):1444–1450CrossRefGoogle Scholar
  40. Zechmeister HG (1998) Annual growth of four pleurocarpous moss species and their applicability for biomonitoring heavy metals.Environmental Monitoring. Assessment 52:441–451Google Scholar
  41. Zechmeister HG, Dullinger S, Koellensperger G, Ertl S, Lettner C, Reiter K (2010) Do metal concentrations in moss from the Zackenberg area, Northeast Greenland, provide a baseline for monitoring? Environ Sci Pollut Res 18:91–98CrossRefGoogle Scholar
  42. Zechmeister HG, Dullinger S, Hohenwallner D, Riss A, Hanus-Illnar A, Scharf S (2006a) Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environ Sci Pollut Res 13:398–405CrossRefGoogle Scholar
  43. Zechmeister HG, Hagendorfer H, Hohenwallner D, Riss A, Hanus-Illnar A (2006b) Analysis of Platinum group elements in mosses as indicators of road traffic emissions in Austria. Atmos Environ 40:7720–7732CrossRefGoogle Scholar
  44. Zechmeister HG, Grodzinska K, Szarek-Lukaszewska G (2003) Bryophytes. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators / Biomonitors (principles, assessment, concepts). Elsevier, Amsterdam, pp 329–375CrossRefGoogle Scholar
  45. Zechmeister HG, Hohenwallner D, Hanus-Illnar A, Roder I, Riss A (2009) Schwermetalldepositionen in Österreich—erfasst durch Biomonitoring mit Moosen. (Aufsammlung 2005). Report des Umweltbundesamtes Wien 0201, WienGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • H. G. Zechmeister
    • 1
    Email author
  • Stephan Hann
    • 2
  • Gunda Koellensperger
    • 2
  1. 1.Department of CVLUniversity of ViennaViennaAustria
  2. 2.Department of Analytical ChemistryUniversity of Natural Ressources and Life SciencesViennaAustria

Personalised recommendations