Advertisement

Solubility of Emitted Platinum Group Elements (Pt, Pd and Rh) in Airborne Particulate Matter (PM10) in the Presence of Organic Complexing Agents

  • Beatrice Bruder
  • Clare L. S. Wiseman
  • Fathi ZereiniEmail author
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The purpose of this study was to examine the influence of the common organic complexing agents, L-methionine and ethylenediaminetetraacetic acid (EDTA), on the solubility of the platinum group elements (PGE), platinum (Pt), palladium (Pd) and rhodium (Rh), associated with field-collected airborne PM10. For comparative purposes, the Standard Reference Material 2557 (Used Auto Catalyst Monolith) was also analysed. The concentrations of PGE were determined for both soluble extracts and the filtered insoluble elemental fractions. To minimize matrix effects, samples first underwent a co-precipitation procedure with Te prior to the determination of Pt and Rh. Platinum concentrations were measured using isotope dilution ICP-Q-MS in collision mode with He, while Rh was determined via ICP-Q-MS. For Pd, samples were first co-precipitated with Hg, before concentrations were determined using isotope dilution ICP-Q-MS, also in collision mode with He. The results demonstrate that the presence of the L-methionine, and EDTA increase the solubility of Pt, Pd and Rh present in airborne PM and the SRM 2557. Samples extracted with solutions containing L-methionine had relatively large soluble fractions of 39 % for Pt, 27 % for Pd and 26 % for Rh. Similarly, Pt, Pd and Rh extracted with a solution containing EDTA had an average solubility of 33, 45 and 35 % for these three elements, respectively. The solubility of PGE present in the catalytic converter material was much lower, with <4 % for Pt, Pd and Rh. This demonstrates that PGE species present in airborne PM are more soluble compared to that in automotive catalytic converters.

Keywords

Road Dust Platinum Group Element Catalytic Converter PM10 Sample Simulated Lung Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was conducted as preliminary research of a proposal which was submitted to the Deutscheforschungsgemeinshaft (DFG) for funding (Project No. GZ:ZE950/2-1, Title: Experimental Study to Examine the Influence of Organic Complexing Agents and Anions (Cl , NO 3 , SO 4 2 und PO 4 3 ) on the Transformation, Behavior and Mobility of Metallic Forms of Palladium (Pd) and Palladium oxide (PdO)).

References

  1. Alsenz H, Zereini F, Wiseman C, Püttmann W (2009) Analysis of palladium concentrations in airborne particulate matter with reductive co-precipitation, He collision gas, and ID-ICP-Q-MS. Anal Bioanal Chem 395:1919–1927CrossRefGoogle Scholar
  2. Alt F, Bambauer A, Hoppstock K, Mergler B, Tölg G (1993) Platinum traces in airborne particulate matter. Determination of whole content, particle size distribution and soluble platinum. Fresenius J Anal Chem 346:693–696Google Scholar
  3. Artelt S, Kock H, König HP, Levsen K, Rosner G (1999) Engine dynamometer experiments: platinum emissions from differently aged three-way catalytic converters. Atmos Environ 33:3559–3567Google Scholar
  4. Bocca B, Caimi S, Smichowski P, Gómez D, Caroli S (2006) Monitoring Pt and Rh in urban aerosols from Buenos Aires, Argentina. Sci Total Environ 358:255–264CrossRefGoogle Scholar
  5. Bozlaker A, Spada NJ, Fraser MP, Chellam S (2014) Elemental characterization of PM2.5 and PM10 emitted from light duty vehicles in the Washburn Tunnel of Houston, Texas: release of Rhodium, Palladium, and Platinum. Environ Sci Technol 48:54–62CrossRefGoogle Scholar
  6. Bruder B (2011) Löslichkeit von Platingruppenelementen (Pt, Pd, Rh) und Schwermetallen (As, Cd, Pb, Cr, Ni, Co und Cu) im Luftstaub (PM10, PM2,5 und PM1) in Anwesenheit von organischen Komplexbildnern. Master’s Thesis, Goethe Universität Frankfurt am Main, unpublishedGoogle Scholar
  7. Colombo C, Monhemius AJ, Plant JA (2008) Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol Environ Saf 71:722–730CrossRefGoogle Scholar
  8. Gomez MB, Gomez MM, Sanchez JL, Fernandez R, Palacios MA (2001) Platinum and rhodium distribution in airborne particulate matter and road dust. Sci Total Environ 269:131–144CrossRefGoogle Scholar
  9. Gómez B, Palacios MA, Gómez M, Sanchez JL, Morrison G, Rauch S, McLeod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel B, Zischka M, Petterson C, Wass U (2002) Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Sci Total Environ 299:1–19CrossRefGoogle Scholar
  10. Gomez MB, Gomez MM, Palacios MA (2003) ICP-MS determination of Pt, Pd and Rh in airborne and road dust after tellurium coprecipitation. J Anal At Spectrom 18:80–83CrossRefGoogle Scholar
  11. Hays MD, Cho S-H, Baldauf R, Schauer JJ, Shafer M (2011) Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmos Environ 45:925–934CrossRefGoogle Scholar
  12. Jarvis KE, Parry SJ, Piper JM (2001) Temporal and spatial studies of autocatalyst-derived Platinum, Rhodium, and Palladium and selected vehicle-derived trace elements in the environment. Environ Sci Technol 35:1031–1036CrossRefGoogle Scholar
  13. Iavicoli I, Bocca B, Caroli S, Caimi S, Alimonti A, Carelli G, Fontana L (2008) Exposure of Rome city tram drivers to airborne platinum, rhodium, and palladium. J Occup Environ Med 50:1158–1166CrossRefGoogle Scholar
  14. Kantisar K, Koellensperger G, Hann S, Limbeck A, Puxbaum H, Stingeder G (2003) Determination of Pt, Pd and Rh by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in size-classified urban aerosol samples. J Anal At Spectrom 18:239–246CrossRefGoogle Scholar
  15. Leopold K, Maier M, Weber S, Schuster M (2008) Long-term study of palladium in road tunnel dust and sewage sludge ash. Environ Pollut 156:341–347CrossRefGoogle Scholar
  16. Limbeck A, Puls C, Handler M (2007) Platinum and palladium emissions from on-road vehicles in the Kaisermühlen tunnel (Vienna, Austria). Environ Sci Technol 41:4938–4945CrossRefGoogle Scholar
  17. Lustig S, Zang S, Michalke B, Schramel P, Beck W (1996) Transformation behaviour of different platinum compounds in clay-like humic soil: speciation investigations. Sci Total Environ 188:195–204CrossRefGoogle Scholar
  18. Messerschmidt J, von Bohlen A, Alt F, Klockenkämper R (2000) Separation and enrichment of palladium and gold in biological and environmental samples, adapted to the determination by total refection X-ray fluorescence. The Analyst 125:397–399CrossRefGoogle Scholar
  19. Morton-Bermea O, Amador-Muñoz O, Martínez-Trejo L, Hernández-Álvarez E, Beramendi-Orosco L, García-Arreola ME (2014) Platinum in PM2.5 of the metropolitan area of Mexico City. Environ Geochem Health. doi: 10.1007/s10653-014-9613-8
  20. Mukai H, Ambe Y, Morita M (1990) Flow injection inductively coupled plasma mass spectrometry for the determination of platinum in airborne particulate matter. J Anal At Spectrom 5:75–80CrossRefGoogle Scholar
  21. Nachtigall D, Kock H, Artelt S, Levsen K, Wünsch G, Rühle T, Schlögl R (1996) Platinum solubility of a substance designed as a model for emissions of automobile catalytic converters. Fresenius J Anal Chem 354:742–746Google Scholar
  22. Nowack B (2002) Environmental chemistry of aminopolycarboxylate chelating agents. Environ Sci Technol 36:4009–4016CrossRefGoogle Scholar
  23. Rauch S, Lu M, Morrison G (2001) Heterogeneity of platinum group metals in airborne particles. Environ Sci Technol 35:595–599CrossRefGoogle Scholar
  24. Rauch S, Ehrenbrink BP, Molina LT, Molina MJ, Ramos R, Hemond HF (2006) Platinum group elements in airborne particles in Mexico City. Environ Sci Technol 40:54–60CrossRefGoogle Scholar
  25. Schlögl R, Indlekofer G, Oelhafen P (1987) Mikropartikelemissionen von Verbrennungsmotoren mit Abgasreinigung, Röntgen-Photoelektronenspektroskopie in der Umweltanalytik. Angew Chem 99:312–322CrossRefGoogle Scholar
  26. Spada N, Bozlaker A, Chellam S (2012) Multi-elemental characterization of tunnel and road dusts in Houston, Texas using dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry: evidence for the release of platinum group and anthropogenic metals from motor vehicles. Anal Chim Acta 735:1–8CrossRefGoogle Scholar
  27. Wichmann H, Anquandah G, Schmidt C, Zachmann D, Bahadir M (2007) Increase of platinum group element concentration in soils and airborne dust in an urban area in German. Environ Sci Technol 388:121–127Google Scholar
  28. Wood S, Tait C, Vlassopoulos D, Janecky D (1994) Solubility and spectroscopic studies of the interactions of palladium with simple carboxylic acids and fulvic acid at low temperature. Geochim Cosmochim Acta 58:625–637CrossRefGoogle Scholar
  29. Wood S, Van Middlesworth J (2004) The influence of acetate and oxalate as simple organic ligands on the behaviour of palladium in surface environments. Can Mineral 42:411–421CrossRefGoogle Scholar
  30. Zereini F, Alsenz H, Wiseman CLS, Püttmann W, Reimer E, Schleyer R, Bieber E, Wallasch M (2012a) Platinum group elements (Pt, Pd, Rh) in airborne particulate matter in rural vs. urban areas of Germany: concentrations and spatial patterns of distribution. Sci Total Environ 416:261–268CrossRefGoogle Scholar
  31. Zereini F, Wiseman CLS, Püttmann W (2012b) In vitro investigations of Platinum, Palladium and Rhodium mobility in urban airborne particulate matter (PM10, PM2.5 und PM1) using simulated lung fluids. Environ Sci Technol 46:10326–10333Google Scholar
  32. Zereini F, Wiseman C, Püttmann W (2007) Changes in palladium, platinum and rhodium concentrations and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ Sci Technol 41:451–456CrossRefGoogle Scholar
  33. Zereini F, Alt F, Messerschmidt J, Bohlen A, Liebl K, Püttmann W (2004) Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main, Germany. Environ Sci Technol 38:1686–1692CrossRefGoogle Scholar
  34. Zereini F, Wiseman C, Alt F, Messerschmidt J, Müller J, Urban H (2001) Platinum and rhodium concentrations in airborne particulate matter in Germany from 1988 to 1998. Environ Sci Technol 35:1996–2000CrossRefGoogle Scholar
  35. Zereini F, Wiseman CLS, Vang M, Albers P, Schneider W, Schindl R, Leopold K (2014) Einfluss von organischem Komplexbildner Ethylendiamintetraessigsäure (EDTA) auf die Transformation und Löslickeit von metallischem Palladium (Pd-Mohr) und Palladium(II)oxid (PdO). 14.Edelmetall-Forum, Universität UlmGoogle Scholar
  36. Zimmermann S, Menzel CM, Stüben D, Taraschewski H, Sures B (2003) Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents. Environ Pollut 124:1–5Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Beatrice Bruder
    • 1
  • Clare L. S. Wiseman
    • 2
  • Fathi Zereini
    • 3
    Email author
  1. 1.MühlheimGermany
  2. 2.School of the Environment, Earth Sciences CentreUniversity of TorontoTorontoCanada
  3. 3.Department of Environmental Analytical Chemistry, Institute for Atmospheric and Environmental SciencesGoethe UniversityFrankfurt am MainGermany

Personalised recommendations