Advertisement

Characterization of PGEs and Other Elements in Road Dusts and Airborne Particles in Houston, Texas

  • Shankararaman ChellamEmail author
  • Ayşe Bozlaker
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

It is imperative to quantify a wide range of elements in order to rigorously apportion the myriad sources of airborne particulate matter especially in industrialized urban environments. Herein, our recently reported analytical method that is optimized for the measurements of Rh, Pd, and Pt alongside numerous representative, transition, and lanthanoid elements is described. We also implemented the newly developed technique for the detailed elemental analysis of several tunnel dusts, surface road dusts, and airborne particulate matter collected in the greater Houston, Texas area. Rh, Pd and Pt were highly enriched in dusts swept from the road surface of the Washburn Tunnel averaging 152 ± 52, 770 ± 208 and 529 ± 130 ngg−1 respectively. Their concentrations were significantly lower in surface road dusts with Rh, Pd, and Pt ranging only between 5.9–8.4, 33.0–88.2, and 90.8–131 ngg−1. Average Rh, Pd, and Pt concentrations in ambient aerosols were 1.5, 11.1, and 4.5 pgm−3 in PM2.5 and 3.8, 23.1, and 15.1 pgm−3 in PM10, respectively. Rh, Pd, and Pt levels were elevated in the air inside the Washburn Tunnel reaching 12.5, 91.1, and 30.1 pgm−3 in PM2.5 and 36.3, 214, and 61.1 pgm−3 in PM10, respectively. These are amongst the first such detailed measurements in the United States and represent our efforts to rigorously quantify particulate pollution emanating from light-duty vehicles.

Keywords

Surface Road Road Dust Airborne Particulate Matter Road Dust Sample Polyatomic Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Portions of this work were funded by the United States Environmental Protection Agency, the Texas Air Research Center, the Texas Commission on Environmental Quality, and the Environmental Institute of Houston. Nick Spada assisted in certain aspects of this work.

References

  1. Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30(8):1009–1017CrossRefGoogle Scholar
  2. Allen JO, Mayo PR, Hughes LS, Salmon LG, Cass GR (2001) Emissions of size-segregated aerosols from on-road vehicles in the Caldecott Tunnel. Environ Sci Technol 35(21):4189–4197CrossRefGoogle Scholar
  3. Alsenz H, Zereini F, Wiseman CLS, Püttmann W (2009) Analysis of palladium concentrations in airborne particulate matter with reductive co-precipitation, He collision gas, and ID-ICP-Q-MS. Anal Bioanal Chem 395(6):1919–1927CrossRefGoogle Scholar
  4. Baranov VI, Tanner SD (1999) A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS)—Part 1. The rf-field energy contribution in thermodynamics of ion-molecule reactions. J Anal At Spectrom 14(8):1133–1142CrossRefGoogle Scholar
  5. Bocca B, Caimi S, Smichowski P, Gomez D, Caroli S (2006) Monitoring Pt and Rh in urban aerosols from Buenos Aires, Argentina. Sci Total Environ 358(1–3):255–264CrossRefGoogle Scholar
  6. Bozlaker A, Buzcu-Guven B, Fraser MP, Chellam S (2013a) Insights into PM10 sources in Houston, Texas: Role of petroleum refineries in enriching lanthanoid metals during episodic emission events. Atmos Environ 69:109–117CrossRefGoogle Scholar
  7. Bozlaker A, Prospero JM, Fraser MP, Chellam S (2013b) Quantifying the contribution of long-range saharan dust transport on particulate matter concentrations in Houston, Texas, using Detailed Elemental Analysis. Environ Sci Technol 47:10179–10187Google Scholar
  8. Bozlaker A, Spada NJ, Fraser MP, Chellam S (2014) Elemental characterization of PM2.5 and PM10 emitted from light duty vehicles in the Washburn Tunnel of Houston, Texas: release of rhodium, palladium, and platinum. Environ Sci Technol. doi: 10.1021/es4031003
  9. Bukowiecki N, Lienemann P, Hill M, Furger M, Richard A, Amato F, Prevot ASH, Baltensperger U, Buchmann B, Gehrig R (2010) PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos Environ 44(19):2330–2340CrossRefGoogle Scholar
  10. Cadle SH, Mulawa PA, Hunsanger EC, Nelson K, Ragazzi RA, Barrett R, Gallagher GL, Lawson DR, Knapp KT, Snow R (1999) Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area. Environ Sci Technol 33(14):2328–2339CrossRefGoogle Scholar
  11. Cairns WRL, De Boni A, Cozzi G, Asti M, Borla EM, Parussa F, Moretto E, Cescon P, Boutron C, Gabrieli J, Barbante C (2011) The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF). Anal Bioanal Chem 399(8):2731–2740CrossRefGoogle Scholar
  12. D’Ilio S, Violante N, Majorani C, Petrucci F (2011) Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: Still a challenge? A review. Analytica Chimica Acta 698(1–2):6–13CrossRefGoogle Scholar
  13. Chellam S, Kulkarni P, Fraser MP (2005) Emissions of Organic Compounds and Trace Metals in Fine Particulate Matter from Motor Vehicles: A Tunnel Study in Houston, Texas. J Air & Waste Mgmt Assoc 55(1):60–72  Google Scholar
  14. Danadurai KSK, Chellam S, Lee CT, Fraser MP (2011) Trace elemental analysis of airborne particulate matter using dynamic reaction cell inductively coupled plasma—mass spectrometry: application to monitoring episodic industrial emission events. Anal Chim Acta 686(1–2):40–49CrossRefGoogle Scholar
  15. Djingova R, Heidenreich H, Kovacheva P, Markert B (2003a) On the determination of platinum group elements in environmental materials by inductively coupled plasma mass spectrometry and microwave digestion. Anal Chim Acta 489(2):245–251CrossRefGoogle Scholar
  16. Djingova R, Kovacheva P, Wagner G, Markert B (2003b) Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci Total Environ 308(1–3):235–246CrossRefGoogle Scholar
  17. Dubiella-Jackowska A, Polkowska Z, Namiesnik J (2007) Platinum group elements: a challenge for environmental analytics. Polish J Environ Stud 16(3):329–345Google Scholar
  18. Ely JC, Neal CR, Kulpa CF, Schneegurt MA, Seidler JA, Jain JC (2001) Implications of platinum-group element accumulation along U.S. roads from catalytic-converter attrition. Environ Sci Technol 35(19):3816–3822CrossRefGoogle Scholar
  19. Ely JC, Neal CR, O’Neill JA, Jain JC (1999) Quantifying the platinum group elements (PGEs) and gold in geological samples using cation exchange pretreatment and ultrasonic nebulization inductively coupled plasma-mass spectrometry (USN-ICP-MS). Chem Geol 157(3–4):219–234CrossRefGoogle Scholar
  20. Fang J, Jiang Y, Yan XP, Ni ZM (2005) Selective quantification of trace palladium in road dusts and roadside soils by displacement solid-phase extraction online coupled with electrothermal atomic absorption spectrometry. Environ Sci Technol 39(1):288–292CrossRefGoogle Scholar
  21. Garg BD, Cadle SH, Mulawa PA, Groblicki PJ, Laroo C, Parr GA (2000) Brake wear particulate matter emissions. Environ Sci Technol 34(21):4463–4469CrossRefGoogle Scholar
  22. Gomez B, Gomez M, Sanchez JL, Fernandez R, Palacios MA (2001) Platinum and rhodium distribution in airborne particulate matter and road dust. Sci Total Environ 269(1–3):131–144CrossRefGoogle Scholar
  23. Gomez B, Palacios MA, Gomez M, Sanchez JL, Morrison G, Rauch S, McLeod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Zischka M, Petterson C, Wass U (2002) Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Sci Total Environ 299(1–3):1–19CrossRefGoogle Scholar
  24. Gomez MB, Gomez MM, Palacios MA (2000) Control of interferences in the determination of Pt, Pd and Rh in airborne particulate matter by inductively coupled plasma mass spectrometry. Anal Chim Acta 404(2):285–294CrossRefGoogle Scholar
  25. Gomez MB, Gomez MM, Palacios MA (2003) ICP-MS determination of Pt, Pd and Rh in airborne and road dust after tellurium coprecipitation. J Anal At Spectrom 18(1):80–83CrossRefGoogle Scholar
  26. Grieshop AP, Lipsky EM, Pekney NJ, Takahama S, Robinson AL (2006) Fine particle emission factors from vehicles in a highway tunnel: effects of fleet composition and season. Atmos Environ 40(2):S287–S298CrossRefGoogle Scholar
  27. Handler M, Puls C, Zbiral J, Marr I, Puxbaum H, Limbeck A (2008) Size and composition of particulate emissions from motor vehicles in the Kaisermuhlen-Tunnel, Vienna. Atmos Environ 42(9):2173–2186CrossRefGoogle Scholar
  28. Hays MD, Cho SH, Baldauf R, Schauer JJ, Shaferd M (2011) Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmos Environ 45(4):925–934CrossRefGoogle Scholar
  29. Hildeman LM, Markowski GR, Cass GR (1991) Chemical composition of emissions from urban sources of fine organic aerosol. Environ Sci Technol 25(4):744–759CrossRefGoogle Scholar
  30. Hjortenkrans DST, Bergback BG, Haggerud AV (2007) Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ Sci Technol 41(15):5224–5230CrossRefGoogle Scholar
  31. Hooda PS, Miller A, Edwards AC (2007) The distribution of automobile catalysts-cast platinum, palladium and rhodium in soils adjacent to roads and their uptake by grass. Sci Total Environ 384(1–3):384–392CrossRefGoogle Scholar
  32. Jarvis KE, Parry SJ, Piper JM (2001) Temporal and spatial studies of autocatalyst-derived platinum, rhodium, and palladium and selected vehicle derived trace elements in the environment. Environ Sci Technol 35(6):1031–1036CrossRefGoogle Scholar
  33. Kanitsar K, Koellensperger G, Hann S, Limbeck A, Puxbaum H, Stingeder G (2003) Determination of Pt, Pd and Rh by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in size-classified urban aerosol samples. J Anal At Spectrom 18(3):239–246CrossRefGoogle Scholar
  34. Kingston HM, Haswell SJ (eds) (1997) Microwave enhanced chemistry: Fundamentals, sample preparation, and applications. American Chemical Society, ACS Professional Reference Book Series, WashingtonGoogle Scholar
  35. Kollensperger G, Hann S, Stingeder G (2000) Determination of Rh, Pd and Pt in environmental silica containing matrices: capabilities and limitations of ICP-SFMS. J Anal At Spectrom 15(12):1553–1557CrossRefGoogle Scholar
  36. Kovacheva P, Djingova R (2002) Ion-exchange method for separation and concentration of platinum and palladium for analysis of environmental samples by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 464(1):7–13CrossRefGoogle Scholar
  37. Kulkarni P, Chellam S, Flanagan JB, Jayanty RKM (2007a) Microwave digestion—ICP-MS for elemental analysis in ambient airborne fine particulate matter: rare earth elements and validation using a filter borne fine particle certified reference material. Anal Chim Acta 599(2):170–176CrossRefGoogle Scholar
  38. Kulkarni P, Chellam S, Fraser MP (2006) Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmos Environ 40(3):508–520CrossRefGoogle Scholar
  39. Kulkarni P, Chellam S, Fraser MP (2007b) Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2.5. Environ Sci Technol 41(19):6748–6754CrossRefGoogle Scholar
  40. Kulkarni P, Chellam S, Mittlefehldt DW (2007c) Microwave-assisted extraction of rare earth elements from petroleum refining catalysts and ambient fine aerosols prior to inductively coupled plasma-mass spectrometry. Anal Chim Acta 581(2):247–259CrossRefGoogle Scholar
  41. Laschober C, Limbeck A, Rendl J, Puxbaum H (2004) Particulate emissions from on-road vehicles in the Kaiserm.uhlen-tunnel (Vienna, Austria). Atmos Environ 38(14):2187–2195CrossRefGoogle Scholar
  42. Lesniewska BA, Godewska-Zylkiewicz B, Bocca B, Caimi S, Caroli S, Hulanicki A (2004) Platinum, palladium and rhodium content in road dust, tunnel dust and common grass in Bialystok area (Poland): a pilot study. Sci Total Environ 321(1–3):93–104CrossRefGoogle Scholar
  43. Lesniewska BA, Godlewska-Zylkiewicz B, Ruszczynska A, Bulska E, Hulanicki A (2006) Elimination of interferences in determination of platinum and palladium in environmental samples by inductively coupled plasma mass spectrometry. Anal Chim Acta 564(2):236–242CrossRefGoogle Scholar
  44. Limbeck A, Puls C, Handler M (2007) Platinum and palladium emissions from on-road vehicles in the Kaisermuhlen Tunnel (Vienna, Austria). Environ Sci Technol 41(14):4938–4945CrossRefGoogle Scholar
  45. Lough GC, Schauer JJ, Park JS, Shafer MM, Deminter JT, Weinstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39(3):826–836CrossRefGoogle Scholar
  46. Mancilla Y, Mendoza A (2012) A tunnel study to characterize PM2.5 emissions from gasoline-powered vehicles in Monterrey, Mexico. Atmos Environ 59:449–460CrossRefGoogle Scholar
  47. Matusiewicz H, Lesinski M (2002) Electrodeposition sample introduction for ultra trace determinations of platinum group elements (Pt, Pd, Rh, Ru) in road dust by electrothermal atomic absorption spectrometry. Int J Environ Anal Chem 82(4):207–223CrossRefGoogle Scholar
  48. Mihajevic M, Galuskova I, Strnad L, Majer V (2013) Distribution of platinum group elements in urban soils, comparison of historically different large cities Prague and Ostrava, Czech Republic. J Geochem Explor 124:212–217CrossRefGoogle Scholar
  49. Moldovan M, Gomez MM, Palacios MA (1999) Determination of platinum, rhodium and palladium in car exhaust fumes. J Anal At Spectrom 44(8):1163–1169CrossRefGoogle Scholar
  50. Morcelli CPR, Figueiredo AMG, Sarkis JES, Enzweiler J, Kakazu M, Sigolo JB (2005) PGEs and other traffic-related elements in roadside soils from Sao Paulo, Brazil. Sci Total Environ 345(1–3):81–91CrossRefGoogle Scholar
  51. Moreno T, Querol X, Alastuey A, de la Rosa J, de la Campa AMS, Minguillon M, Pandolfi M, Gonzalez-Castanedo Y, Monfort E, Gibbons W (2010) Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci Total Environ 408(20):4569–4579CrossRefGoogle Scholar
  52. Moreno T, Querol X, Alastuey A, Pey J, Minguillon MC, Perez N, Bernabe RM, Blanco S, Cardenas B, Gibbons W (2008) Lanthanoid geochemistry of urban atmospheric particulate matter. Environ Sci Technol 42(17):6502–6507CrossRefGoogle Scholar
  53. Morton O, Puchelt H, Hernandez E, Lounejeva E (2001) Traffic-related platinum group elements (PGE) in soils from Mexico City. J Geochem Explor 72(3):223–227CrossRefGoogle Scholar
  54. Motelica-Heino M, Rauch S, Morrison GM, Donard OFX (2001) Determination of palladium, platinum and rhodium concentrations in urban road sediments by laser ablation-ICP-MS. Anal Chim Acta 436(2):233–244CrossRefGoogle Scholar
  55. Mukai H, Ambe Y, Morita M (1990) Flow injection inductively coupled plasma mass spectrometry for the determination of platinum in airborne particulate matter. J Anal At Spectrom 5(1):75–80CrossRefGoogle Scholar
  56. Olesik JW, Jones DR (2006) Strategies to develop methods using ion-molecule reactions in a quadrupole reaction cell to overcome spectral overlaps in inductively coupled plasma mass spectrometry. J Anal At Spectrom 21(2):141–159CrossRefGoogle Scholar
  57. Pakbin P, Ning Z, Shafer MM, Schauer JJ, Sioutas C (2011) Seasonal and spatial coarse particle elemental concentrations in the Los Angeles area. Aerosol Sci Technol 45(8):949–963CrossRefGoogle Scholar
  58. Pan S, Zhang G, Sun Y, Chakrabort P (2009) Accumulating characteristics of platinum group elements (PGE) in urban environments. China. Science of the Total Environment 407(14):4248–4252CrossRefGoogle Scholar
  59. Pan SH, Sun YL, Zhang G, Chakraborty P (2013) Spatial distributions and characteristics of platinum group elements (PGEs) in urban dusts from China and India. J Geochem Explor 128:153–157CrossRefGoogle Scholar
  60. Park JW, Hu ZC, Gao S, Campbell IH, Gong HJ (2012) Platinum group element abundances in the upper continental crust revisited: New constraints from analyses of Chinese loess. Geochim Cosmochim Acta 93:63–76CrossRefGoogle Scholar
  61. Petrucci F, Bocca B, Alimonti A, Caroli S (2000) Determination of Pd, Pt and Rh in airborne particulate and road dust by high-resolution ICP-MS: a preliminary investigation of the emission from automotive catalysts in the urban area of Rome. J Anal At Spectrom 15(5):525–528CrossRefGoogle Scholar
  62. Prichard HM, Fisher PC (2012) Identification of platinum and palladium particles emitted from vehicles and dispersed into the surface environment. Environ Sci Technol 46(6):3149–3154CrossRefGoogle Scholar
  63. Prichard HM, Sampson J, Jackson M (2009) A further discussion of the factors controlling the distribution of Pt, Pd, Rh and Au in road dust, gullies, road sweeper and gully flusher sediment in the city of Sheffield. UK. Science of the Total Environment 407(5):1715–1725CrossRefGoogle Scholar
  64. Puls C, Limbeck A, Hann S (2012) Bioaccessibility of palladium and platinum in urban aerosol particulates. Atmos Environ 55:213–219CrossRefGoogle Scholar
  65. Rauch S, Hemond HF, Peucker-Ehrenbrink B, Ek KH, Morrison GM (2005) Platinum group element concentrations and osmium isotopic composition in urban airborne particles from Boston. Massachusetts. Environmental Science and Technology 39(24):9464–9470CrossRefGoogle Scholar
  66. Rauch S, Lu M, Morrison GM (2001) Heterogeneity of platinum group metals in airborne particles. Environ Sci Technol 35(3):595–599CrossRefGoogle Scholar
  67. Rauch S, Morrison GM, Moldovan M (2002) Scanning laser ablation-ICP-MS tracking of platinum group elements in urban particles. Sci Total Environ 286(1–3):243–251CrossRefGoogle Scholar
  68. Rauch S, Morrison GM, Motelica-Heino M, Donard OFX, Muris M (2000) Elemental association and fingerprinting of traffic related metals in road sediments. Environ Sci Technol 34(15):3119–3123CrossRefGoogle Scholar
  69. Rauch S, Peucker-Ehrenbrink B, Molina LT, Molina MJ, Ramos R, Hemond HF (2006) Platinum group elements in airborne particles in Mexico City. Environ Sci Technol 40(24):7554–7560CrossRefGoogle Scholar
  70. Ravindra K, Bencs L, Van Grieken R (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318(1–3):1–43CrossRefGoogle Scholar
  71. Rudnick RL, Gao S (2003) Composition of the Continental Crust. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, vol 3. Pergamon/Elsevier, Boston, MA, pp 1-64. doi: 10.1016/B0-08-043751-6/03016-4
  72. Saint’Pierre TD, Dias LF, Maia SM, Curtius AJ (2004) Determination of Cd, Cu, Fe, Pb and Tl in gasoline as emulsion by electrothermal vaporization inductively coupled plasma mass spectrometry with analyte addition and isotope dilution calibration techniques. Spectrochimica Acta Part B-Atomic Spectroscopy 59(4):551–558CrossRefGoogle Scholar
  73. Schafer J, Eckhardt JD, Berner ZA, Stuben D (1999) Time-dependent increase of traffic-emitted platinum-group elements (PGE) in different environmental compartments. Environ Sci Technol 33(18):3166–3170CrossRefGoogle Scholar
  74. Schramel P, Zischka M, Muntau H, Stojanik B, Dams R, Gomez GM, Quevauviller P (2000) Collaborative evaluation of the analytical state-of-the-art of platinum, palladium and rhodium determinations in road dust. J Environ Monit 2(5):443–446CrossRefGoogle Scholar
  75. Simitchiev K, Stefanova V, Kmetov V, Andreev G, Sanchez A, Canals A (2008) Investigation of ICP-MS spectral interferences in the determination of Rh, Pd and Pt in road dust: Assessment of correction algorithms via uncertainty budget analysis and interference alleviation by preliminary acid leaching. Talanta 77(2):889–896CrossRefGoogle Scholar
  76. Simpson LA, Thomsen M, Alloway BJ, Parker A (2001) A dynamic reaction cell (DRC) solution to oxide-based interferences in inductively coupled plasma mass spectrometry (ICP-MS) analysis of the noble metals. J Anal At Spectrom 16(12):1375–1380CrossRefGoogle Scholar
  77. Spada N, Bozlaker A, Chellam S (2012) Multi-elemental characterization of tunnel and road dusts in Houston, Texas using dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry: Evidence for the release of platinum group and anthropogenic metals from motor vehicles. Anal Chim Acta 735:1–8CrossRefGoogle Scholar
  78. Sternbeck J, Sjodin A, Andreasson K (2002) Metal emissions from road traffic and the influence of resuspension - results from two tunnel studies. Atmos Environ 36(30):4735–4744CrossRefGoogle Scholar
  79. Sures B, Zimmermann S, Messerschmidt J, Von Bohlen A (2002) Relevance and analysis of traffic related platinum group metals (Pt, Pd, Rh) in the aquatic biosphere, with emphasis on palladium. Ecotoxicology 11(5):385–392CrossRefGoogle Scholar
  80. Sures B, Zimmermann S, Messerschmidt J, von Bohlen A, Alt F (2001) First report on the uptake of automobile catalyst emitted palladium by European eels (Anguilla anguilla) following experimental exposure to road dust. Environ Pollut 113(3):341–345CrossRefGoogle Scholar
  81. Sutherland RA, Pearson DG, Ottley CJ (2007) Platinum-group elements (Ir, Pd, Pt and Rh) in road-deposited sediments in two urban watersheds. Hawaii. Applied Geochemistry 22(7):1485–1501CrossRefGoogle Scholar
  82. Sutherland RA, Pearson DG, Ottley CJ (2008) Grain size partitioning of platinum-group elements in road-deposited sediments: Implications for anthropogenic flux estimates from autocatalysts. Environ Pollut 151(3):503–515CrossRefGoogle Scholar
  83. Tanner SD, Baranov VI, Bandura DR (2002) Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochimica Acta Part B 57(9):1361–1452CrossRefGoogle Scholar
  84. Tanner SD, Baranov VI, Vollkopf U (2000) A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS) - Part III. Optimization and analytical performance. J Anal At Spectrom 15(9):1261–1269CrossRefGoogle Scholar
  85. Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400(1–3):270–282CrossRefGoogle Scholar
  86. Tsogas GZ, Giokas DL, Vlessidis AG, Aloupi M, Angelidis MO (2009) Survay of the distribution and time-dependent increase of platinum-group element accumulation along urban roads in Ioannina (NW Greece). Water Air Soil Pollut 201:265–281CrossRefGoogle Scholar
  87. Wang J, Zhu RH, Shi YZ (2007) Distribution of platinum group elements in road dust in the Beijing metropolitan area, China. J Environmental Sciences 19(1):29–34CrossRefGoogle Scholar
  88. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232CrossRefGoogle Scholar
  89. Whiteley JD (2005) Seasonal variability of platinum, palladium and rhodium (PGE) levels in road dusts and roadside soils, perth, Western Australia. Water Air Soil Pollut 160(1–4):77–93CrossRefGoogle Scholar
  90. Whiteley JD, Murray F (2003) Anthropogenic platinum group element (Pt, Pd and Rh) concentrations in road dusts and roadside soils from Perth, Western Australia. Sci Total Environ 317(1–3):121–135CrossRefGoogle Scholar
  91. Wichmann H, Anquandah GAK, Schmidt C, Zachmann D, Bahadir MA (2007) Increase of platinum group element concentrations in soils and airborne dust in an urban area in Germany. Sci Total Environ 388(1–3):121–127CrossRefGoogle Scholar
  92. Wiseman CLS, Zereini F (2009) Airborne particulate matter, platinum group elements and human health: a review of recent evidence. Sci Total Environ 407(8):2493–2500CrossRefGoogle Scholar
  93. Zereini F, Alsenz H, Wiseman CLS, Puttmann W, Reimer E, Schleyer R, Bieber E, Wallasch M (2012) Platinum group elements (Pt, Pd, Rh) in airborne particulate matter in rural vs. urban areas of Germany: concentrations and spatial patterns of distribution. Sci Total Environ 416:261–268CrossRefGoogle Scholar
  94. Zereini F, Alt F (eds) (2000) Anthropogenic platinum-group element emissions: their impact on man and environment. Springer, Berlin. doi: 10.1007/978-3-642-59678-0
  95. Zereini F, Alt F, Messerschmidt J, Von Bohlen A, Liebl K, Puttmann W (2004) Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main, Germany. Environ Sci Technol 38(6):1686–1692CrossRefGoogle Scholar
  96. Zereini F, Alt F, Messerschmidt J, Wiseman C, Feldmann I, Von Bohlen A, Muller J, Liebl K, Puttmann W (2005) Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am main, Germany. Environ Sci Technol 39(9):2983–2989CrossRefGoogle Scholar
  97. Zereini F, Wiseman C, Alt F, Messerschmidt J, Muller J, Urban H (2001a) Platinum and rhodium concentrations in airborne particulate matter in Germany from 1988 to 1998. Environ Sci Technol 35(10):1996–2000CrossRefGoogle Scholar
  98. Zereini F, Wiseman C, Beyer JM, Artelt S, Urban H (2001b) Platinum, lead and cerium concentrations of street particulate matter (Frankfurt am Main, Germany). J Soils Sediments 1(3):188–195CrossRefGoogle Scholar
  99. Zereini F, Wiseman C, Puettmann W (2007) Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ Sci Technol 41(2):451–456CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of HoustonHoustonUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations