Skip to main content

Noncontact Atomic Force Microscopy for Atomic-Scale Characterization of Material Surfaces

  • Chapter
Surface Science Tools for Nanomaterials Characterization

Abstract

Among the large variety of scanning probe microscopy techniques, noncontact atomic force microscopy (NC-AFM) stands out with its capability of atomic-resolution imaging and spectroscopy measurements on conducting, semiconducting as well as insulating sample surfaces. In this chapter, we review the fundamental experimental and instrumental methodology associated with the technique and present key results obtained on different classes of material surfaces. In addition to atomic-resolution imaging, the use of NC-AFM towards the goal of atomic-resolution force spectroscopy is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55(6):726–735

    CAS  Google Scholar 

  2. Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7x7 Reconstruction on Si(111) resolved in real space. Phys Rev Lett 50(2):120–123

    Article  CAS  Google Scholar 

  3. Chen CJ (2007) Introduction to scanning tunneling microscopy. Oxford University Press, Oxford

    Book  Google Scholar 

  4. Bonnell DA, Basov DN, Bode M, Diebold U, Kalinin SV, Madhavan V, Novotny L, Salmeron M, Schwarz UD, Weiss PS (2012) Imaging physical phenomena with local probes: from electrons to photons. Rev Mod Phys 84(3):1343

    Article  CAS  Google Scholar 

  5. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  CAS  Google Scholar 

  6. Albrecht TR, Quate CF (1988) Atomic resolution with the atomic force microscope on conductors and nonconductors. J Vac Sci Technol Vac Surf Films 6(2):271–274

    Article  CAS  Google Scholar 

  7. Albrecht TR, Akamine S, Carver TE, Quate CF (1990) Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol-Vac Surf Films 8(4):3386–3396

    Article  CAS  Google Scholar 

  8. Akamine S, Barrett RC, Quate CF (1990) Improved atomic force microscope images using microcantilevers with sharp tips. Appl Phys Lett 57(3):316–318

    Article  CAS  Google Scholar 

  9. Wolter O, Bayer T, Greschner J (1991) Micromachined silicon sensors for scanning force microscopy. J Vac Sci Technol B 9(2):1353–1357

    Article  CAS  Google Scholar 

  10. Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53(12):1045–1047

    Article  Google Scholar 

  11. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) An atomic-resolution atomic-force microscope implemented using an optical-lever. J Appl Phys 65(1):164–167

    Article  CAS  Google Scholar 

  12. Rugar D, Mamin HJ, Guethner P (1989) Improved fiber-optic interferometer for atomic force microscopy. Appl Phys Lett 55(25):2588–2590

    Article  CAS  Google Scholar 

  13. Moser A, Hug HJ, Jung T, Schwarz UD, Guntherodt HJ (1993) A miniature fiber optic force microscope scan head. Meas Sci Technol 4(7):769–775

    Article  Google Scholar 

  14. Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Europhys Lett 3(12):1281–1286

    Article  CAS  Google Scholar 

  15. Meyer G, Amer NM (1990) Optical-beam-deflection atomic force microscopy – the nacl (001) surface. Appl Phys Lett 56(21):2100–2101

    Article  CAS  Google Scholar 

  16. Marti O, Colchero J, Mlynek J (1993) Friction and forces on an atomic-scale. Nanosour Manip Atoms Under High Fields Temp Appl 235:253–269

    Article  Google Scholar 

  17. Meyer G, Amer NM (1990) Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl Phys Lett 57(20):2089–2091

    Article  CAS  Google Scholar 

  18. Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59(17):1942–1945

    Article  CAS  Google Scholar 

  19. Eaton PJ, West P (2010) Atomic force microscopy. Oxford University Press, Oxford

    Book  Google Scholar 

  20. Giessibl FJ, Binnig G (1992) Investigation of the (001) cleavage plane of potassium-bromide with an atomic force microscope at 4.2-k in ultra-high vacuum. Ultramicroscopy 42:281–289

    Article  Google Scholar 

  21. Ohnesorge F, Binnig G (1993) True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science 260(5113):1451–1456

    Article  CAS  Google Scholar 

  22. Baykara MZ, Schwendemann TC, Altman EI, Schwarz UD (2010) Three-dimensional atomic force microscopy – taking surface imaging to the next level. Adv Mater 22(26–27):2838–2853

    Article  CAS  Google Scholar 

  23. Giessibl FJ (1995) Atomic-resolution of the silicon (111)-(7x7) surface by atomic-force microscopy. Science 267(5194):68–71

    Article  CAS  Google Scholar 

  24. Sugawara Y, Ohta M, Ueyama H, Morita S (1995) Defect motion on an InP(110) surface observed with noncontact atomic-force microscopy. Science 270(5242):1646–1648

    Article  CAS  Google Scholar 

  25. Kitamura S, Iwatsuki M (1995) Observation of 7x7 reconstructed structure on the silicon (111) surface using ultrahigh-vacuum noncontact atomic-force microscopy. Jpn J Appl Phys Part 2 Lett 34(1B):L145–L148

    Article  CAS  Google Scholar 

  26. Ueyama H, Ohta M, Sugawara Y, Morita S (1995) Atomically resolved InP(110) surface observed with noncontact ultrahigh-vacuum atomic-force microscope. Jpn J Appl Phys Part 2 Lett 34(8B):L1086–L1088

    Article  CAS  Google Scholar 

  27. Morita S, Wiesendanger R, Meyer E (2002) Noncontact atomic force microscopy. Springer, Berlin

    Book  Google Scholar 

  28. Morita S, Giessibl FJ, Wiesendanger R (2009) Noncontact atomic force microscopy, vol 2. Springer, Berlin

    Book  Google Scholar 

  29. Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301

    Article  CAS  Google Scholar 

  30. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75(3):949–983

    Article  CAS  Google Scholar 

  31. Hofer WA, Foster AS, Shluger AL (2003) Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 75(4):1287–1331

    Article  CAS  Google Scholar 

  32. Barth C, Foster AS, Henry CR, Shluger AL (2011) Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv Mater 23(4):477–501

    Article  CAS  Google Scholar 

  33. Morita S (2013) Atomically resolved force microscopy. J Vac Sci Technol A 31(5):050802

    Article  CAS  Google Scholar 

  34. Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency-modulation detection using high-q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69(2):668–673

    Article  Google Scholar 

  35. Yokoyama K, Ochi T, Yoshimoto A, Sugawara Y, Morita S (2000) Atomic resolution imaging on Si(100)2x1 and Si(100)2x1: H surfaces with noncontact atomic force microscopy. Japanese J Appl Phys Part 2 Lett 39(2A):L113–L115

    Article  CAS  Google Scholar 

  36. Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Dynamic-mode scanning force microscopy study of n-InAs(110)-(1x1) at low temperatures. Phys Rev B 61(4):2837–2845

    Article  CAS  Google Scholar 

  37. Kitamura S, Iwatsuki M (1996) Observation of silicon surfaces using ultrahigh-vacuum noncontact, atomic force microscopy. Jpn J Appl Phys Part 2-Lett 35(5B):L668–L671

    Article  CAS  Google Scholar 

  38. Sugawara Y, Uchihashi T, Abe M, Morita S (1999) True atomic resolution imaging of surface structure and surface charge on the GaAs(110). Appl Surf Sci 140(3–4):371–375

    Article  CAS  Google Scholar 

  39. Sawada D, Sugimoto Y, Morita K, Abe M, Morita S (2010) Simultaneous atomic force and scanning tunneling microscopy study of the Ge(111)-c(2x8) surface. J Vac Sci Technol B 28(3):C4D1

    Article  CAS  Google Scholar 

  40. Yokoyama K, Ochi T, Sugawara Y, Morita S (1999) Atomically resolved silver imaging on the Si(111)-(root 3 x root 3)-Ag surface using a noncontact atomic force microscope. Phys Rev Lett 83(24):5023–5026

    Article  CAS  Google Scholar 

  41. Sweetman A, Gangopadhyay S, Danza R, Berdunov N, Moriarty P (2009) qPlus atomic force microscopy of the Si(100) surface: buckled, split-off, and added dimers. Appl Phys Lett 95(6):063112

    Article  CAS  Google Scholar 

  42. Sweetman A, Danza R, Gangopadhyay S, Moriarty P (2012) Imaging and manipulation of the Si(100) surface by small-amplitude NC-AFM at zero and very low applied bias. J Phys Condens Matter 24(8):084009

    Article  CAS  Google Scholar 

  43. Sweetman A, Stannard A, Sugimoto Y, Abe M, Morita S, Moriarty P (2013) Simultaneous noncontact AFM and STM of Ag:Si(111)-(root 3 x root 3)R30°. Phys Rev B 87(7):075310

    Article  CAS  Google Scholar 

  44. Li YJ, Nomura H, Ozaki N, Naitoh Y, Kageshima M, Sugawara Y, Hobbs C, Kantorovich L (2006) Origin of p(2 x 1) phase on Si(001) by noncontact atomic force microscopy at 5 k. Phys Rev Lett 96(10):106104

    Article  CAS  Google Scholar 

  45. Naitoh Y, Ma ZM, Li YJ, Kageshima M, Sugawara Y (2010) Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopy. J Vac Sci Technol B 28(6):1210–1214

    Article  CAS  Google Scholar 

  46. Minobe T, Uchihashi T, Tsukamoto T, Orisaka S, Sugawara Y, Morita S (1999) Distance dependence of noncontact-AFM image contrast on Si(111)root 3 X root 3-Ag structure. Appl Surf Sci 140(3–4):298–303

    Article  CAS  Google Scholar 

  47. Orisaka S, Minobe T, Uchihashi T, Sugawara Y, Morita S (1999) The atomic resolution imaging of metallic Ag(111) surface by noncontact atomic force microscope. Appl Surf Sci 140(3–4):243–246

    Article  CAS  Google Scholar 

  48. Loppacher C, Bammerlin M, Guggisberg M, Schar S, Bennewitz R, Baratoff A, Meyer E, Guntherodt HJ (2000) Dynamic force microscopy of copper surfaces: atomic resolution and distance dependence of tip-sample interaction and tunneling current. Phys Rev B 62(24):16944–16949

    Article  CAS  Google Scholar 

  49. Caciuc V, Holscher H, Weiner D, Fuchs H, Schirmeisen A (2008) Noncontact atomic force microscopy imaging mechanism on Ag(110): experiment and first-principles theory. Phys Rev B 77(4):045411

    Article  CAS  Google Scholar 

  50. Konig T, Simon GH, Rust HP, Heyde M (2009) Atomic resolution on a metal single crystal with dynamic force microscopy. Appl Phys Lett 95(8):083116

    Article  CAS  Google Scholar 

  51. Allers W, Schwarz A, Schwarz UD, Wiesendanger R (1999) Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: atomic resolution on the xenon(111) surface. Europhys Lett 48(3):276–279

    Article  CAS  Google Scholar 

  52. Barth C, Reichling M (2001) Imaging the atomic arrangements on the high-temperature reconstructed alpha-Al2O3(0001) surface. Nature 414(6859):54–57

    Article  CAS  Google Scholar 

  53. Reichling M, Barth C (1999) Scanning force imaging of atomic size defects on the CaF2(111) surface. Phys Rev Lett 83(4):768–771

    Article  CAS  Google Scholar 

  54. Barth C, Foster AS, Reichling M, Shluger AL (2001) Contrast formation in atomic resolution scanning force microscopy on CaF(2)(111): experiment and theory. J Phys-Condens Matter 13(10):2061–2079

    Article  CAS  Google Scholar 

  55. Hoffmann R, Lantz MA, Hug HJ, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2003) Atomic resolution imaging and frequency versus distance measurements on NiO(001) using low-temperature scanning force microscopy. Phys Rev B 67(8):085402

    Article  CAS  Google Scholar 

  56. Ruschmeier K, Schirmeisen A, Hoffmann R (2009) Site-specific force-vector field studies of KBr(001) by atomic force microscopy. Nanotechnology 20(26):264013

    Article  CAS  Google Scholar 

  57. Gritschneder S, Namai Y, Iwasawa Y, Reichling M (2005) Structural features of CeO2(111) revealed by dynamic SFM. Nanotechnology 16(3):S41–S48

    Article  CAS  Google Scholar 

  58. Ostendorf F, Torbrugge S, Reichling M (2008) Atomic scale evidence for faceting stabilization of a polar oxide surface. Phys Rev B 77(4):041405

    Article  CAS  Google Scholar 

  59. Rasmussen MK, Foster AS, Canova FF, Hinnemann B, Helveg S, Meinander K, Besenbacher F, Lauritsen JV (2011) Noncontact atomic force microscopy imaging of atomic structure and cation defects of the polar MgAl2O4(100) surface: experiments and first-principles simulations. Phys Rev B 84(23):235419

    Article  CAS  Google Scholar 

  60. Hoffmann R, Weiner D, Schirmeisen A, Foster AS (2009) Sublattice identification in noncontact atomic force microscopy of the NaCl(001) surface. Phys Rev B 80(11):115426

    Article  CAS  Google Scholar 

  61. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944):1110–1114

    Article  CAS  Google Scholar 

  62. Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed WM, Jaspars M (2010) Organic structure determination using atomic-resolution scanning probe microscopy. Nat Chem 2(10):821–825

    Article  CAS  Google Scholar 

  63. Meyer G, Gross L, Mahn F, Repp J (2012) Scanning probe microscopy of atoms and molecules on insulating films: from imaging to molecular manipulation. Chimia 66(1–2):10–15

    Article  CAS  Google Scholar 

  64. Mohn F, Schuler B, Gross L, Meyer G (2013) Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl Phys Lett 102(7):073109

    Article  CAS  Google Scholar 

  65. Gotsmann B, Anczykowski B, Seidel C, Fuchs H (1999) Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves. Appl Surf Sci 140(3–4):314–319

    Article  CAS  Google Scholar 

  66. Durig U (1999) Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Appl Phys Lett 75(3):433–435

    Article  CAS  Google Scholar 

  67. Giessibl FJ (2001) A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl Phys Lett 78(1):123–125

    Article  CAS  Google Scholar 

  68. Sader JE, Jarvis SP (2004) Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl Phys Lett 84(10):1801–1803

    Article  CAS  Google Scholar 

  69. Giessibl FJ (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B 56(24):16010–16015

    Article  CAS  Google Scholar 

  70. Durig U (2000) Extracting interaction forces and complementary observables in dynamic probe microscopy. Appl Phys Lett 76(9):1203–1205

    Article  CAS  Google Scholar 

  71. Holscher H, Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes. Phys Rev B 61(19):12678–12681

    Article  CAS  Google Scholar 

  72. Gotsmann B, Fuchs H (2001) Dynamic force spectroscopy of conservative and dissipative forces in an Al-Au(111) tip-sample system. Phys Rev Lett 86(12):2597–2600

    Article  CAS  Google Scholar 

  73. Lantz MA, Hug HJ, Hoffmann R, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2001) Quantitative measurement of short-range chemical bonding forces. Science 291(5513):2580–2583

    Article  CAS  Google Scholar 

  74. Hoffmann R, Kantorovich LN, Baratoff A, Hug HJ, Guntherodt HJ (2004) Sublattice identification in scanning force microscopy on alkali halide surfaces. Phys Rev Lett 92(14):146103

    Article  CAS  Google Scholar 

  75. Abe M, Sugimoto Y, Custance O, Morita S (2005) Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. Appl Phys Lett 87(17):173503

    Article  CAS  Google Scholar 

  76. Sugimoto Y, Innami S, Abe M, Custance O, Morita S (2007) Dynamic force spectroscopy using cantilever higher flexural modes. Appl Phys Lett 91(9):093120

    Article  CAS  Google Scholar 

  77. Sugimoto Y, Pou P, Abe M, Jelinek P, Perez R, Morita S, Custance O (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446(7131):64–67

    Article  CAS  Google Scholar 

  78. Langkat SM, Holscher H, Schwarz A, Wiesendanger R (2003) Determination of site specific interatomic forces between an iron coated tip and the NiO(001) surface by force field spectroscopy. Surf Sci 527(1–3):12–20

    Article  CAS  Google Scholar 

  79. Schirmeisen A, Weiner D, Fuchs H (2006) Single-atom contact mechanics: from atomic scale energy barrier to mechanical relaxation hysteresis. Phys Rev Lett 97(13):136101

    Article  CAS  Google Scholar 

  80. Heyde M, Simon GH, Rust HP, Freund HJ (2006) Probing adsorption sites on thin oxide films by dynamic force microscopy. Appl Phys Lett 89(26):263107

    Article  CAS  Google Scholar 

  81. Ruschmeier K, Schirmeisen A, Hoffmann R (2008) Atomic-scale force-vector fields. Phys Rev Lett 101(15):156102

    Article  CAS  Google Scholar 

  82. Sugimoto Y, Namikawa T, Miki K, Abe M, Morita S (2008) Vertical and lateral force mapping on the Si(111)-(7x7) surface by dynamic force microscopy. Phys Rev B 77(19):195424

    Article  CAS  Google Scholar 

  83. Ashino M, Obergfell D, Haluska M, Yang SH, Khlobystov AN, Roth S, Wiesendanger R (2008) Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat Nanotechnol 3(6):337–341

    Article  CAS  Google Scholar 

  84. Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat Nanotechnol 4(5):307–310

    Article  CAS  Google Scholar 

  85. Baykara MZ, Schwendemann TC, Albers BJ, Pilet N, Monig H, Altman EI, Schwarz UD (2012) Exploring atomic-scale lateral forces in the attractive regime: a case study on graphite (0001). Nanotechnology 23(40):405703

    Article  CAS  Google Scholar 

  86. Baykara MZ, Todorovic M, Monig H, Schwendemann TC, Unverdi O, Rodrigo L, Altman EI, Perez R, Schwarz UD (2013) Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements. Phys Rev B 87(15):155414

    Article  CAS  Google Scholar 

  87. Fremy S, Kawai S, Pawlak R, Glatzel T, Baratoff A, Meyer E (2012) Three-dimensional dynamic force spectroscopy measurements on KBr(001): atomic deformations at small tip-sample separations. Nanotechnology 23(5):055401

    Article  CAS  Google Scholar 

  88. Baykara MZ, Dagdeviren OE, Schwendemann TC, Monig H, Altman EI, Schwarz UD (2012) Probing three-dimensional surface force fields with atomic resolution: measurement strategies, limitations, and artifact reduction. Beilstein J Nanotechnol 3:637–650

    Article  CAS  Google Scholar 

  89. Pethica JB (1986) Interatomic forces in scanning tunneling microscopy – giant corrugations of the graphite surface – comment. Phys Rev Lett 57(25):3235

    Article  CAS  Google Scholar 

  90. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope force mapping and profiling on a sub 100-a scale. J Appl Phys 61(10):4723–4729

    Article  CAS  Google Scholar 

  91. Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf Sci 290(1–2):L688–L692

    CAS  Google Scholar 

  92. Castro García R (2010) Amplitude modulation atomic force microscopy. Wiley-VCH, Weinheim

    Book  Google Scholar 

  93. Erlandsson R, Olsson L, Martensson P (1996) Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7x7. Phys Rev B 54(12):R8309–R8312

    Article  CAS  Google Scholar 

  94. Israelachvili JN (2011) Intermolecular and surface forces. Academic, Burlington

    Google Scholar 

  95. Moll N, Gross L, Mohn F, Curioni A, Meyer G (2010) The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J Phys 12(12):125020

    Article  CAS  Google Scholar 

  96. Fukui K, Onishi H, Iwasawa Y (1997) Atom-resolved image of the TiO2(110) surface by noncontact atomic force microscopy. Phys Rev Lett 79(21):4202–4205

    Article  CAS  Google Scholar 

  97. Allers W, Schwarz A, Schwarz UD, Wiesendanger R (1999) Dynamic scanning force microscopy at low temperatures on a van der Waals surface: graphite (0001). Appl Surf Sci 140(3–4):247–252

    Article  CAS  Google Scholar 

  98. Giessibl FJ (2000) Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl Phys Lett 76(11):1470–1472

    Article  CAS  Google Scholar 

  99. Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7x7) surface observed by atomic force microscopy. Science 289(5478):422–425

    Article  CAS  Google Scholar 

  100. Giessibl FJ, Hembacher S, Herz M, Schiller C, Mannhart J (2004) Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor. Nanotechnology 15(2):S79–S86

    Article  CAS  Google Scholar 

  101. Albers BJ, Liebmann M, Schwendemann TC, Baykara MZ, Heyde M, Salmeron M, Altman EI, Schwarz UD (2008) Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy. Rev Sci Instrum 79(3):033704

    Article  CAS  Google Scholar 

  102. Giessibl FJ, Bielefeldt H, Hembacher S, Mannhart J (1999) Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Appl Surf Sci 140(3–4):352–357

    Article  CAS  Google Scholar 

  103. Perez R, Payne MC, Stich I, Terakura K (1997) Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Phys Rev Lett 78(4):678–681

    Article  CAS  Google Scholar 

  104. Perez R, Stich I, Payne MC, Terakura K (1998) Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111). Phys Rev B 58(16):10835–10849

    Article  CAS  Google Scholar 

  105. Bennewitz R, Bammerlin M, Guggisberg M, Loppacher C, Baratoff A, Meyer E, Guntherodt HJ (1999) Aspects of dynamic force microscopy on NaCl/Cu(111): resolution, tip-sample interactions and cantilever oscillation characteristics. Surf Interface Anal 27(5–6):462–466

    Article  CAS  Google Scholar 

  106. Guggisberg M, Bammerlin M, Loppacher C, Pfeiffer O, Abdurixit A, Barwich V, Bennewitz R, Baratoff A, Meyer E, Guntherodt HJ (2000) Separation of interactions by noncontact force microscopy. Phys Rev B 61(16):11151–11155

    Article  CAS  Google Scholar 

  107. Kawai S, Glatzel T, Koch S, Baratoff A, Meyer E (2011) Interaction-induced atomic displacements revealed by drift-corrected dynamic force spectroscopy. Phys Rev B 83(3):035421

    Article  CAS  Google Scholar 

  108. Sugimoto Y, Ueda K, Abe M, Morita S (2012) Three-dimensional scanning force/tunneling spectroscopy at room temperature. J Phys Condens Matter 24(8):084008

    Article  CAS  Google Scholar 

  109. Braun DA, Weiner D, Such B, Fuchs H, Schirmeisen A (2009) Submolecular features of epitaxially grown PTCDA on Cu(111) analyzed by force field spectroscopy. Nanotechnology 20(26):264004

    Article  CAS  Google Scholar 

  110. Mohn F, Gross L, Meyer G (2011) Measuring the short-range force field above a single molecule with atomic resolution. Appl Phys Lett 99(5):053106

    Article  CAS  Google Scholar 

  111. Such B, Glatzel T, Kawai S, Koch S, Meyer E (2010) Three-dimensional force spectroscopy of KBr(001) by tuning fork-based cryogenic noncontact atomic force microscopy. J Vac Sci Technol B 28(3):C4B1

    Article  CAS  Google Scholar 

  112. Such B, Glatzel T, Kawai S, Meyer E, Turansky R, Brndiar J, Stich I (2012) Interplay of the tip-sample junction stability and image contrast reversal on a Cu(111) surface revealed by the 3D force field. Nanotechnology 23(4):045705

    Article  CAS  Google Scholar 

  113. Abe M, Sugimoto Y, Custance O, Morita S (2005) Atom tracking for reproducible force spectroscopy at room temperature with non-contact atomic force microscopy. Nanotechnology 16(12):3029–3034

    Article  CAS  Google Scholar 

  114. Abe M, Sugimoto Y, Namikawa T, Morita K, Oyabu N, Morita S (2007) Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy. Appl Phys Lett 90(20):203103

    Article  CAS  Google Scholar 

  115. Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Kuhnle A, Reichling M, Hofer WA, Lauritsen JV, Besenbacher F (2008) Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO(2)(110) surface. Phys Rev B 78(4):045416

    Article  CAS  Google Scholar 

  116. Oyabu N, Pou P, Sugimoto Y, Jelinek P, Abe M, Morita S, Perez R, Custance O (2006) Single atomic contact adhesion and dissipation in dynamic force microscopy. Phys Rev Lett 96(10):106101

    Article  CAS  Google Scholar 

  117. Pou P, Ghasemi SA, Jelinek P, Lenosky T, Goedecker S, Perez R (2009) Structure and stability of semiconductor tip apexes for atomic force microscopy. Nanotechnology 20(26):264015

    Article  CAS  Google Scholar 

  118. Bechstein R, Gonzalez C, Schutte J, Jelinek P, Perez R, Kuhnle A (2009) ‘All-inclusive’ imaging of the rutile TiO2(110) surface using NC-AFM. Nanotechnology 20(50):505703

    Article  CAS  Google Scholar 

  119. Arai T, Gritschneder S, Troger L, Reichling M (2010) Atomic resolution force microscopy imaging on a strongly ionic surface with differently functionalized tips. J Vac Sci Technol B 28(6):1279–1283

    Article  CAS  Google Scholar 

  120. Lauritsen JV, Foster AS, Olesen GH, Christensen MC, Kuhnle A, Helveg S, Rostrup-Nielsen JR, Clausen BS, Reichling M, Besenbacher F (2006) Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology 17(14):3436–3441

    Article  CAS  Google Scholar 

  121. Enevoldsen GH, Foster AS, Christensen MC, Lauritsen JV, Besenbacher F (2007) Noncontact atomic force microscopy studies of vacancies and hydroxyls of TiO(2)(110): experiments and atomistic simulations. Phys Rev B 76(20):205415

    Article  CAS  Google Scholar 

  122. Uluutku B, Baykara MZ (2013) Effect of lateral tip stiffness on atomic-resolution force field spectroscopy. J Vac Sci Technol B 31(4):041801

    Article  CAS  Google Scholar 

  123. Sun ZX, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P (2011) Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys Rev Lett 106(4):046104

    Article  CAS  Google Scholar 

  124. Schwarz A, Schwarz UD, Langkat S, Holscher H, Allers W, Wiesendanger R (2002) Dynamic force microscopy with atomic resolution at low temperatures. Appl Surf Sci 188(3–4):245–251

    Article  CAS  Google Scholar 

  125. Rahe P, Schutte J, Schniederberend W, Reichling M, Abe M, Sugimoto Y, Kuhnle A (2011) Flexible drift-compensation system for precise 3D force mapping in severe drift environments. Rev Sci Instrum 82(6):063704

    Article  CAS  Google Scholar 

  126. Fukuma T, Ichii T, Kobayashi K, Yamada H, Matsushige K (2005) True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments. Appl Phys Lett 86(3):034103

    Article  CAS  Google Scholar 

  127. Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett 87(3):034101

    Article  CAS  Google Scholar 

  128. Fukuma T, Ueda Y, Yoshioka S, Asakawa H (2010) Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys Rev Lett 104(1):016101

    Article  CAS  Google Scholar 

  129. Herruzo ET, Asakawa H, Fukuma T, Garcia R (2013) Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Nanoscale 5(7):2678–2685

    Article  CAS  Google Scholar 

  130. Asakawa H, Fukuma T (2009) Spurious-free cantilever excitation in liquid by piezoactuator with flexure drive mechanism. Rev Sci Instrum 80(10):103703

    Article  CAS  Google Scholar 

  131. Asakawa H, Fukuma T (2009) The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid. Nanotechnology 20(26):264008

    Article  CAS  Google Scholar 

  132. Mitani Y, Kubo M, Muramoto K, Fukuma T (2009) Wideband digital frequency detector with subtraction-based phase comparator for frequency modulation atomic force microscopy. Rev Sci Instrum 80(8):083705

    Article  CAS  Google Scholar 

  133. Fukuma T (2009) Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy. Rev Sci Instrum 80(2):023707

    Article  CAS  Google Scholar 

  134. Guthner P (1996) Simultaneous imaging of Si(111) 7x7 with atomic resolution in scanning tunneling microscopy, atomic force microscopy, and atomic force microscopy noncontact mode. J Vac Sci Technol B 14(4):2428–2431

    Article  Google Scholar 

  135. Luthi R, Meyer E, Bammerlin M, Baratoff A, Lehmann T, Howald L, Gerber C, Guntherodt HJ (1996) Atomic resolution in dynamic force microscopy across steps on Si(111)7x7. Z Physik B-Condens Matter 100(2):165–167

    Article  CAS  Google Scholar 

  136. Nakagiri N, Suzuki M, Okiguchi K, Sugimura H (1997) Site discrimination of adatoms in Si(111)-7x7 by noncontact atomic force microscopy. Surf Sci 373(1):L329–L332

    Article  CAS  Google Scholar 

  137. Sawada D, Sugimoto Y, Abe M, Morita S (2010) Observation of subsurface atoms of the si(111)-(7x7) surface by atomic force microscopy. Appl Phys Express 3(11):116602

    Article  CAS  Google Scholar 

  138. Sugimoto Y, Nakajima Y, Sawada D, Morita K, Abe M, Morita S (2010) Simultaneous AFM and STM measurements on the Si(111)-(7x7) surface. Phys Rev B 81(24):245322

    Article  CAS  Google Scholar 

  139. Uozumi T, Tomiyoshi Y, Suehira N, Sugawara Y, Morita S (2002) Observation of Si(100) surface with noncontact atomic force microscope at 5 K. Appl Surf Sci 188(3–4):279–284

    Article  CAS  Google Scholar 

  140. Sweetman A, Jarvis S, Danza R, Bamidele J, Gangopadhyay S, Shaw GA, Kantorovich L, Moriarty P (2011) Toggling bistable atoms via mechanical switching of bond angle. Phys Rev Lett 106(13):136101

    Article  CAS  Google Scholar 

  141. Sweetman A, Jarvis S, Danza R, Bamidele J, Kantorovich L, Moriarty P (2011) Manipulating Si(100) at 5 K using qPlus frequency modulated atomic force microscopy: role of defects and dynamics in the mechanical switching of atoms. Phys Rev B 84(8):085426

    Article  CAS  Google Scholar 

  142. Sweetman A, Jarvis S, Danza R, Moriarty P (2012) Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: probing the probe. Beilstein J Nanotechnol 3:25–32

    Article  CAS  Google Scholar 

  143. Naitoh Y, Li YJ, Nomura H, Kageshima M, Sugawara Y (2010) Effect of surface stress around the sa step of Si(001) on the dimer structure determined by noncontact atomic force microscopy at 5 K. J Physical Soc Japan 79(1):013601

    Article  CAS  Google Scholar 

  144. Sugimoto Y, Abe M, Yoshimoto K, Custance O, Yi I, Morita S (2005) Non-contact atomic force microscopy study of the Sn/Si(111) mosaic phase. Appl Surf Sci 241(1–2):23–27

    Article  CAS  Google Scholar 

  145. Yi I, Sugimoto Y, Nishi R, Morita S (2006) Study on topographic images of Sn/Si(111)-(root 3 x root 3)R30° surface by non-contact AFM. Surf Sci 600(17):3382–3387

    Article  CAS  Google Scholar 

  146. Yi I, Nishi R, Sugimoto Y, Morita S (2007) Non-contact AFM observation of the (root 3x root 3) to (3x3) phase transition on Sn/Ge(111) and Sn/Si(111) surfaces. Appl Surf Sci 253(6):3072–3076

    Article  CAS  Google Scholar 

  147. Sugimoto Y, Pou P, Custance O, Jelinek P, Morita S, Perez R, Abe M (2006) Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: the case of the alpha-Sn/Si(111)-(root 3x root 3)R30° surface. Phys Rev B 73(20):205329

    Article  CAS  Google Scholar 

  148. Abe M, Sugimoto Y, Morita S (2005) Imaging the restatom of the Ge(111)-c(2x8) surface with noncontact atomic force microscopy at room temperature. Nanotechnology 16(3):S68–S72

    Article  CAS  Google Scholar 

  149. Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Detection of doping atom distributions and individual dopants in InAs(110) by dynamic-mode scanning force microscopy in ultrahigh vacuum. Phys Rev B 62(20):13617–13622

    Article  CAS  Google Scholar 

  150. Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, Cambridge

    Google Scholar 

  151. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    Article  CAS  Google Scholar 

  152. Freund HJ, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37(10):2224–2242

    Article  CAS  Google Scholar 

  153. Raza H, Pang CL, Haycock SA, Thornton G (1999) Non-contact atomic force microscopy imaging of TiO2(100) surfaces. Appl Surf Sci 140(3–4):271–275

    Article  CAS  Google Scholar 

  154. Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Hofer WA, Hammer B, Lauritsen JV, Besenbacher F (2009) Imaging of the hydrogen subsurface site in rutile TiO(2). Phys Rev Lett 102(13):136103

    Article  CAS  Google Scholar 

  155. Yurtsever A, Sugimoto Y, Abe M, Morita S (2010) NC-AFM imaging of the TiO(2)(110)-(1x1) surface at low temperature. Nanotechnology 21(16):165702

    Article  CAS  Google Scholar 

  156. Yurtsever A, Fernandez-Torre D, Gonzalez C, Jelinek P, Pou P, Sugimoto Y, Abe M, Perez R, Morita S (2012) Understanding image contrast formation in TiO2 with force spectroscopy. Phys Rev B 85(12):125416

    Article  CAS  Google Scholar 

  157. Pang CL, Raza H, Haycock SA, Thornton G (2002) Noncontact atomic force microscopy imaging of ultrathin Al2O3 on NiAl(110). Phys Rev B 65(20):201401

    Article  CAS  Google Scholar 

  158. Wang J, Howard A, Egdell RG, Pethica JB, Foord JS (2002) Arrangement of rotational domains of the (root 31 x root 31) R +/− 9° reconstruction of Al2O3(0001) revealed by non-contact AFM. Surf Sci 515(2–3):337–343

    Article  CAS  Google Scholar 

  159. Simon GH, Konig T, Nilius M, Rust HP, Heyde M, Freund HJ (2008) Atomically resolved force microscopy images of complex surface unit cells: ultrathin alumina film on NiAl(110). Phys Rev B 78(11):113401

    Article  CAS  Google Scholar 

  160. Simon GH, Konig T, Rust HP, Heyde M, Freund HJ (2009) Atomic structure of the ultrathin alumina on NiAl(110) and its antiphase domain boundaries as seen by frequency modulation dynamic force microscopy. New J Phys 11(9):093009

    Article  CAS  Google Scholar 

  161. Lauritsen JV, Jensen MCR, Venkataramani K, Hinnemann B, Helveg S, Clausen BS, Besenbacher F (2009) Atomic-scale structure and stability of the root 31 x root 31R9° surface of Al2O3(0001). Phys Rev Lett 103(7):076103

    Article  CAS  Google Scholar 

  162. Heyde M, Simon GH, Lichtenstein L (2013) Resolving oxide surfaces – from point and line defects to complex network structures. Phys Status Solidi B-Basic Solid State Phys 250(5):895–921

    Article  CAS  Google Scholar 

  163. Simon GH, Konig T, Heinke L, Lichtenstein L, Heyde M, Freund HJ (2011) Atomic structure of surface defects in alumina studied by dynamic force microscopy: strain-relief-, translation- and reflection-related boundaries, including their junctions. New J Phys 13(12):123028

    Article  CAS  Google Scholar 

  164. Fukui K, Namai Y, Iwasawa Y (2002) Imaging of surface oxygen atoms and their defect structures on CeO2(111) by noncontact atomic force microscopy. Appl Surf Sci 188(3–4):252–256

    Article  CAS  Google Scholar 

  165. Namai Y, Fukui KI, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Catal Today 85(2–4):79–91

    Article  CAS  Google Scholar 

  166. Namai Y, Fukui K, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J Phys Chem B 107(42):11666–11673

    Article  CAS  Google Scholar 

  167. Gritschneder S, Reichling M (2007) Structural elements of CeO2(111) surfaces. Nanotechnology 18(4):044024

    Article  CAS  Google Scholar 

  168. Gritschneder S, Reichling M (2008) Atomic resolution imaging on CeO2(111) with hydroxylated probes. J Phys Chem C 112(6):2045–2049

    Article  CAS  Google Scholar 

  169. Pieper HH, Derks C, Zoellner MH, Olbrich R, Troger L, Schroeder T, Neumann M, Reichling M (2012) Morphology and nanostructure of CeO2(111) surfaces of single crystals and Si(111) supported ceria films. Phys Chem Chem Phys 14(44):15361–15368

    Article  CAS  Google Scholar 

  170. Hosoi H, Sueoka K, Hayakawa K, Mukasa K (2000) Atomic resolved imaging of cleaved NiO(100) surfaces by NC-AFM. Appl Surf Sci 157(4):218–221

    Article  CAS  Google Scholar 

  171. Allers W, Langkat S, Wiesendanger R (2001) Dynamic low-temperature scanning force microscopy on nickel oxide (001). Appl Phys Mater Sci Process 72:S27–S30

    Article  Google Scholar 

  172. Kaiser U, Schwarz A, Wiesendanger R (2007) Magnetic exchange force microscopy with atomic resolution. Nature 446(7135):522–525

    Article  CAS  Google Scholar 

  173. Schmid M, Mannhart J, Giessibl FJ (2008) Searching atomic spin contrast on nickel oxide (001) by force microscopy. Phys Rev B 77(4):045402

    Article  CAS  Google Scholar 

  174. Kaiser U, Schwarz A, Wiesendanger R (2008) Evaluating local properties of magnetic tips utilizing an antiferromagnetic surface. Phys Rev B 78(10):104418

    Article  CAS  Google Scholar 

  175. Barth C, Henry CR (2003) Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys Rev Lett 91(19):196102

    Article  CAS  Google Scholar 

  176. Heyde M, Sterrer M, Rust HP, Freund HJ (2005) Atomic resolution on MgO(001) by atomic force microscopy using a double quartz tuning fork sensor at low-temperature and ultrahigh vacuum. Appl Phys Lett 87(8):083104

    Article  CAS  Google Scholar 

  177. Heyde M, Sterrer M, Rust HP, Freund HJ (2006) Frequency modulated atomic force microscopy on MgO(001) thin films: interpretation of atomic image resolution and distance dependence of tip-sample interaction. Nanotechnology 17(7):S101–S106

    Article  CAS  Google Scholar 

  178. Torbrugge S, Ostendorf F, Reichling M (2009) Stabilization of zinc-terminated ZnO(0001) by a modified surface stoichiometry. J Phys Chem C 113(12):4909–4914

    Article  CAS  Google Scholar 

  179. Suzuki S, Ohminami Y, Tsutsumi T, Shoaib MM, Ichikawa M, Asakura K (2003) The first observation of an atomic scale noncontact AFM image of MoO3(010). Chem Lett 32(12):1098–1099

    Article  CAS  Google Scholar 

  180. Rasmussen MK, Foster AS, Hinnemann B, Canova FF, Helveg S, Meinander K, Martin NM, Knudsen J, Vlad A, Lundgren E, Stierle A, Besenbacher F, Lauritsen JV (2011) Stable cation inversion at the MgAl2O4(100) surface. Phys Rev Lett 107(3):036102

    Article  CAS  Google Scholar 

  181. Rasmussen MK, Meinander K, Besenbacher F, Lauritsen JV (2012) Noncontact atomic force microscopy study of the spinel MgAl2O4(111) surface. Beilstein J Nanotechnol 3:192–197

    Article  Google Scholar 

  182. Kishimoto S, Kageshima M, Naitoh Y, Li YJ, Sugawara Y (2008) Study of oxidized Cu(110) surface using noncontact atomic force microscopy. Surf Sci 602(13):2175–2182

    Article  CAS  Google Scholar 

  183. Lauritsen JV, Reichling M (2010) Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. J Phys Condens Matter 22(26):263001

    Article  CAS  Google Scholar 

  184. Irie H, Sunada K, Hashimoto K (2004) Recent developments in TiO2 photocatalysis: novel applications to interior ecology materials and energy saving systems. Electrochemistry 72(12):807–812

    CAS  Google Scholar 

  185. Onishi H, Iwasawa Y (1994) Reconstruction of TiO2(110) surface – STM study with atomic-scale resolution. Surf Sci 313(1–2):L783–L789

    Article  CAS  Google Scholar 

  186. Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Laegsgaard E, Besenbacher F, Hammer B (2006) Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys Rev Lett 96(6):066107

    Article  CAS  Google Scholar 

  187. Schaub R, Thostrup P, Lopez N, Laegsgaard E, Stensgaard I, Norskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). Phys Rev Lett 87(26):266104

    Article  CAS  Google Scholar 

  188. Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O-2: a combined high-resolution STM and DFT study. Surf Sci 598(1–3):226–245

    Article  CAS  Google Scholar 

  189. Foster AS, Pakarinen OH, Airaksinen JM, Gale JD, Nieminen RM (2003) Simulating atomic force microscopy imaging of the ideal and defected TiO2(110) surface. Phys Rev B 68(19):195410

    Article  CAS  Google Scholar 

  190. Pinto HP, Enevoldsen GH, Besenbacher F, Lauritsen JV, Foster AS (2009) The role of tip size and orientation, tip-surface relaxations and surface impurities in simultaneous AFM and STM studies on the TiO(2)(110) surface. Nanotechnology 20(26):264020

    Article  CAS  Google Scholar 

  191. Bammerlin M, Lüthi R, Meyer E, Baratoff A, Lü J, Guggisberg M, Gerber C, Howald L, Güntherodt HJ (1997) True atomic resolution on the surface of an insulator via ultrahigh vacuum dynamic force microscopy. Probe Microsc 1:3

    CAS  Google Scholar 

  192. Foster AS, Barth C, Shluger AL, Reichling M (2001) Unambiguous interpretation of atomically resolved force microscopy images of an insulator. Phys Rev Lett 86(11):2373–2376

    Article  CAS  Google Scholar 

  193. Foster AS, Barth C, Shluger AL, Nieminen RM, Reichling M (2002) Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface. Phys Rev B 66(23):235417

    Article  CAS  Google Scholar 

  194. Barth C, Reichling M (2000) Resolving ions and vacancies at step edges on insulating surfaces. Surf Sci 470(1–2):L99–L103

    Article  CAS  Google Scholar 

  195. Bennewitz R, Schar S, Barwich V, Pfeiffer O, Meyer E, Krok F, Such B, Kolodzej J, Szymonski M (2001) Atomic-resolution images of radiation damage in KBr. Surf Sci 474(1–3):L197–L202

    Article  CAS  Google Scholar 

  196. Bennewitz R, Pfeiffer O, Schar S, Barwich V, Meyer E, Kantorovich LN (2002) Atomic corrugation in nc-AFM of alkali halides. Appl Surf Sci 188(3–4):232–237

    Article  CAS  Google Scholar 

  197. Fujii S, Fujihira M (2007) Atomic contrast on a point defect on CaF2(111) imaged by non-contact atomic force microscopy. Nanotechnology 18(8):084011

    Article  Google Scholar 

  198. Giessibl FJ, Reichling M (2005) Investigating atomic details of the CaF2(111) surface with a qPlus sensor. Nanotechnology 16(3):S118–S124

    Article  CAS  Google Scholar 

  199. Hirth S, Ostendorf F, Reichling M (2006) Lateral manipulation of atomic size defects on the CaF2(111) surface. Nanotechnology 17(7):S148–S154

    Article  CAS  Google Scholar 

  200. Hoffmann R, Lantz MA, Hug HJ, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2002) Atomic resolution imaging and force versus distance measurements on KBr(001) using low temperature scanning force microscopy. Appl Surf Sci 188(3–4):238–244

    Article  CAS  Google Scholar 

  201. Bammerlin M, Luthi R, Meyer E, Baratoff A, Lu J, Guggisberg M, Loppacher C, Gerber C, Guntherodt HJ (1998) Dynamic SFM with true atomic resolution on alkali halide surfaces. Appl Phys Mater Sci Process 66:S293–S294

    Article  CAS  Google Scholar 

  202. Barth C, Henry CR (2008) Imaging Suzuki precipitates on NaCl: Mg(2+)(001) by scanning force microscopy. Phys Rev Lett 100(9):096101

    Article  CAS  Google Scholar 

  203. Barth C, Henry CR (2009) NaCl(001) surfaces nanostructured by Suzuki precipitates: a scanning force microscopy study. New J Phys 11(4):043003

    Article  CAS  Google Scholar 

  204. Foster AS, Barth C, Henry CR (2009) Chemical identification of ions in doped NaCl by scanning force microscopy. Phys Rev Lett 102(25):256103

    Article  CAS  Google Scholar 

  205. Bennewitz R, Foster AS, Kantorovich LN, Bammerlin M, Loppacher C, Schar S, Guggisberg M, Meyer E, Shluger AL (2000) Atomically resolved edges and kinks of NaCl islands on Cu(111): experiment and theory. Phys Rev B 62(3):2074–2084

    Article  CAS  Google Scholar 

  206. Klust A, Ohta T, Bostwick AA, Yu QM, Ohuchi FS, Olmstead MA (2004) Atomically resolved imaging of a CaF bilayer on Si(111): subsurface atoms and the image contrast in scanning force microscopy. Phys Rev B 69(3):035405

    Article  CAS  Google Scholar 

  207. Filleter T, Paul W, Bennewitz R (2008) Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys Rev B 77(3):035430

    Article  CAS  Google Scholar 

  208. Holscher H, Allers W, Schwarz UD, Schwarz A, Wiesendanger R (2000) Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy. Phys Rev B 62(11):6967–6970

    Article  CAS  Google Scholar 

  209. Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2003) Revealing the hidden atom in graphite by low-temperature atomic force microscopy. Proc Natl Acad Sci U S A 100(22):12539–12542

    Article  CAS  Google Scholar 

  210. Kawai S, Kawakatsu H (2009) Surface-relaxation-induced giant corrugation on graphite (0001). Phys Rev B 79(11):115440

    Article  CAS  Google Scholar 

  211. Ashino M, Schwarz A, Behnke T, Wiesendanger R (2004) Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: characterization of interatomic van der Waals forces. Phys Rev Lett 93(13):136101

    Article  CAS  Google Scholar 

  212. Loffler D, Uhlrich JJ, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Buchner C, Heyde M, Shaikhutdinov S, Freund HJ, Wlodarczyk R, Sierka M, Sauer J (2010) Growth and structure of crystalline silica sheet on Ru(0001). Phys Rev Lett 105(14):146104

    Article  CAS  Google Scholar 

  213. Lichtenstein L, Heyde M, Freund HJ (2012) Atomic arrangement in two-dimensional silica: from crystalline to vitreous structures. J Phys Chem C 116(38):20426–20432

    Article  CAS  Google Scholar 

  214. Majzik Z, Tchalala MR, Svec M, Hapala P, Enriquez H, Kara A, Mayne AJ, Dujardin G, Jelinek P, Oughaddou H (2013) Combined AFM and STM measurements of a silicene sheet grown on the Ag(111) surface. J Phys Condens Matter 25(22):225301

    Article  CAS  Google Scholar 

  215. Sun ZX, Hamalainen SK, Sainio J, Lahtinen J, Vanmaekelbergh D, Liljeroth P (2011) Topographic and electronic contrast of the graphene moire on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy. Phys Rev B 83(8):081415

    Article  CAS  Google Scholar 

  216. Boneschanscher MP, van der Lit J, Sun ZX, Swart I, Liljeroth P, Vanmaekelbergh D (2012) Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 6(11):10216–10221

    Article  CAS  Google Scholar 

  217. Hamalainen SK, Boneschanscher MP, Jacobse PH, Swart I, Pussi K, Moritz W, Lahtinen J, Liljeroth P, Sainio J (2013) Structure and local variations of the graphene moire on Ir(111). Phys Rev B 88(20):6

    Article  CAS  Google Scholar 

  218. Dedkov Y, Voloshina E (2014) Multichannel scanning probe microscopy and spectroscopy of graphene moire structures. Phys Chem Chem Phys 16(9):3894–3908

    Article  CAS  Google Scholar 

  219. Fukui K, Onishi H, Iwasawa Y (1997) Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy. Chem Phys Lett 280(3–4):296–301

    Article  CAS  Google Scholar 

  220. Rahe P, Nimmrich M, Nefedov A, Naboka M, Woll C, Kuhnle A (2009) Transition of molecule orientation during adsorption of terephthalic acid on rutile TiO2(110). J Phys Chem C 113(40):17471–17478

    Article  CAS  Google Scholar 

  221. Schutte J, Bechstein R, Rahe P, Rohlfing M, Kuhnle A, Langhals H (2009) Imaging perylene derivatives on rutile TiO2(110) by noncontact atomic force microscopy. Phys Rev B 79(4):045428

    Article  CAS  Google Scholar 

  222. Loske F, Bechstein R, Schutte J, Ostendorf F, Reichling M, Kuhnle A (2009) Growth of ordered C60 islands on TiO2(110). Nanotechnology 20(6):065606

    Article  CAS  Google Scholar 

  223. Fremy S, Schwarz A, Lammle K, Prosenc M, Wiesendanger R (2009) The monomer-to-dimer transition and bimodal growth of Co-salen on NaCl(001): a high resolution atomic force microscopy study. Nanotechnology 20(40):405608

    Article  CAS  Google Scholar 

  224. Lammle K, Trevethan T, Schwarz A, Watkins M, Shluger A, Wiesendanger R (2010) Unambiguous determination of the adsorption geometry of a metal-organic complex on a bulk insulator. Nano Lett 10(8):2965–2971

    Article  CAS  Google Scholar 

  225. Pawlak R, Kawai S, Fremy S, Glatzel T, Meyer E (2011) Atomic-scale mechanical properties of orientated C(60) molecules revealed by noncontact atomic force microscopy. ACS Nano 5(8):6349–6354

    Article  CAS  Google Scholar 

  226. Pawlak R, Kawai S, Fremy S, Glatzel T, Meyer E (2012) High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy. J Phys Condens Matter 24(8):084005

    Article  CAS  Google Scholar 

  227. Such B, Trevethan T, Glatzel T, Kawai S, Zimmerli L, Meyer E, Shluger AL, Amijs CHM, de Mendoza P, Echavarren AM (2010) Functionalized truxenes: adsorption and diffusion of single molecules on the KBr(001) surface. ACS Nano 4(6):3429–3439

    Article  CAS  Google Scholar 

  228. Pawlak R, Fremy S, Kawai S, Glatzel T, Fang HJ, Fendt LA, Diederich F, Meyer E (2012) Directed rotations of single porphyrin molecules controlled by localized force spectroscopy. ACS Nano 6(7):6318–6324

    Article  CAS  Google Scholar 

  229. Sasahara A, Uetsuka H, Onishi H (2001) NC-AFM topography of HCOO and CH(3)COO molecules co-adsorbed on TiO(2)(110). Appl Phys Mater Sci Process 72:S101–S103

    Article  Google Scholar 

  230. Gritschneder S, Iwasawa Y, Reichling M (2007) Strong adhesion of water to CeO2(111). Nanotechnology 18(4):044025

    Article  CAS  Google Scholar 

  231. Burke SA, Mativetsky JM, Fostner S, Grutter P (2007) C60 on alkali halides: epitaxy and morphology studied by noncontact AFM. Phys Rev B 76(3):035419

    Article  CAS  Google Scholar 

  232. Burke SA, Ledue JM, Topple JM, Fostner S, Grutter P (2009) Relating the functional properties of an organic semiconductor to molecular structure by nc-AFM. Adv Mater 21(20):2029–2033

    Article  CAS  Google Scholar 

  233. Gotsmann B, Seidel C, Anczykowski B, Fuchs H (1999) Conservative and dissipative tip-sample interaction forces probed with dynamic AFM. Phys Rev B 60(15):11051–11061

    Article  CAS  Google Scholar 

  234. Lantz MA, Hoffmann R, Foster AS, Baratoff A, Hug HJ, Hidber HR, Guntherodt HJ (2006) Site-specific force-distance characteristics on NaCl(001): measurements versus atomistic simulations. Phys Rev B 74(24):245426

    Article  CAS  Google Scholar 

  235. Hoffmann R, Barth C, Foster AS, Shluger AL, Hug HJ, Guntherodt HJ, Nieminen RM, Reichling M (2005) Measuring site-specific cluster-surface bond formation. J Am Chem Soc 127(50):17863–17866

    Article  CAS  Google Scholar 

  236. Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2005) Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys Rev Lett 94(5):056101

    Article  CAS  Google Scholar 

  237. Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Data acquisition and analysis procedures for high-resolution atomic force microscopy in three dimensions. Nanotechnology 20(26):264002

    Article  CAS  Google Scholar 

  238. Holscher H, Langkat SM, Schwarz A, Wiesendanger R (2002) Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl Phys Lett 81(23):4428–4430

    Article  CAS  Google Scholar 

  239. Ashino M, Schwarz A, Holscher H, Schwarz UD, Wiesendanger R (2005) Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy. Nanotechnology 16(3):S134–S137

    Article  CAS  Google Scholar 

  240. Schwarz A, Holscher H, Langkat SM, Wiesendanger R (2003) Three-dimensional force field spectroscopy. AIP Conf Proc 696:68–78

    Article  CAS  Google Scholar 

  241. Bhushan B (2002) Introduction to tribology. Wiley, New York

    Google Scholar 

  242. Bhushan B (2005) Nanotribology and nanomechanics: an introduction. Springer, Berlin

    Book  Google Scholar 

  243. Giessibl FJ, Herz M, Mannhart J (2002) Friction traced to the single atom. Proc Natl Acad Sci U S A 99(19):12006–12010

    Article  CAS  Google Scholar 

  244. Atabak M, Unverdi O, Ozer HO, Oral A (2009) Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement. Appl Surf Sci 256(5):1299–1303

    Article  CAS  Google Scholar 

  245. Weymouth AJ, Meuer D, Mutombo P, Wutscher T, Ondracek M, Jelinek P, Giessibl FJ (2013) Atomic structure affects the directional dependence of friction. Phys Rev Lett 111(12):126103

    Article  CAS  Google Scholar 

  246. Kawai S, Glatzel T, Koch S, Such B, Baratoff A, Meyer E (2010) Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements. Phys Rev B 81(8):085420

    Article  CAS  Google Scholar 

  247. Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ (2008) The force needed to move an atom on a surface. Science 319(5866):1066–1069

    Article  CAS  Google Scholar 

  248. Weymouth AJ, Hofmann T, Giessibl FJ (2013) Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343:1120–1122

    Article  CAS  Google Scholar 

  249. Welker J, Giessibl FJ (2012) Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science 336(6080):444–449

    Article  CAS  Google Scholar 

  250. Kimura K, Ido S, Oyabu N, Kobayashi K, Hirata Y, Imai T, Yamada H (2010) Visualizing water molecule distribution by atomic force microscopy. J Chem Phys 132(19):194705

    Article  CAS  Google Scholar 

  251. Asakawa H, Yoshioka S, Nishimura K, Fukuma T (2012) Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy. ACS Nano 6(10):9013–9020

    Article  CAS  Google Scholar 

  252. Sugimoto Y, Jelinek P, Pou P, Abe M, Morita S, Perez R, Custance O (2007) Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force microscopy. Phys Rev Lett 98(10):106104

    Article  CAS  Google Scholar 

  253. Sugimoto Y, Pou P, Custance O, Jelinek P, Abe M, Perez R, Morita S (2008) Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322(5900):413–417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Z. Baykara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baykara, M.Z. (2015). Noncontact Atomic Force Microscopy for Atomic-Scale Characterization of Material Surfaces. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_8

Download citation

Publish with us

Policies and ethics