Skip to main content

Field Ion and Field Desorption Microscopy: Principles and Applications

  • Chapter
Surface Science Tools for Nanomaterials Characterization
  • 2734 Accesses

Abstract

The chapter describes the basic principles of the field ion (FIM) and field desorption (FDM) microscopies and of the probe-hole spectroscopic analysis of imaging species, as well as their applications for the studying of dynamic surface processes on the atomic scale.

Although the field ion microscopy is the oldest technique resolving individual atoms, it remains preeminent in their ability to prepare the atomically perfect surfaces and to persuade the dynamic surface processes such as catalytic reactions on the nanoscale using the parallel imaging principle. This has led, despite of the great success of the scanning electron microscopy and scanning tunneling microscopy (STM), to the revival of the FIM based techniques and to developing of new versions, such as Lithium Field Desorption Microscopy (Li-FDM) in last decades. The present chapter is focused on the recent surface chemistry applications, especially on the in situ imaging of catalytic reactions. The newest results in studying the local reaction kinetics in the nanosized reaction systems by FIM are presented and the fluctuation-induced deviations from the behaviour predicted by macroscopic rate laws revealed by FIM are discussed.

Especially emphasized is the possibility to analyze via probe-hole the species emitted from the individual surface sites. Such an analysis provides the basis for the Field Ion Appearance Energy Spectroscopy (FIAES). This technique and its practical applications, particularly in catalysis, are explicitly analyzed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wintterlin J, Volkening S, Janssens TVW, Zambelli T, Ertl G (1997) Atomic and macroscopic reaction rates of a surface-catalyzed reaction. Science 278:1931

    Article  CAS  Google Scholar 

  2. Hendriksen BLM, Bobaru SC, Frenken JWM (2005) Looking at heterogeneous catalysis at atmospheric pressure using tunnel vision. Top Catal 36:43

    Article  CAS  Google Scholar 

  3. Nishikawa O, Kimoto M (1994) Toward a scanning atom probe – computer simulation of electric field. Appl Surf Sci 76/77:424

    Article  Google Scholar 

  4. Suchorski Y, Drachsel W (2007) Catalytic reactions on platinum nanofacets: bridging the size and complexity gap. Top Catal 46:201, and references therein

    Article  CAS  Google Scholar 

  5. http://www.fhi-berlin.mpg.de/th/personal/hermann/pictures.html

  6. Suchorski Y, Schmidt WA, Block JH (1993) Enhanced local electric fields in field ionization at steps of clean and Au-covered Rh(111). Appl Surf Sci 67:124

    Article  CAS  Google Scholar 

  7. Freund H-J, Baumer M, Libuda J, Kuhlenbeck H, Al-Shamery K, Hamann H (1998) Metal aggregates on oxide surfaces: structure and adsorption. Cryst Res Technol 33:977

    Article  CAS  Google Scholar 

  8. Gorodetski VV, Drachsel W, Block JH (1993) Imaging the oscillating CO-oxidation on Pt-surfaces with field ion microscopy. Catal Lett 19:223

    Article  Google Scholar 

  9. Medvedev VK, Suchorski Y, Block JH (1995) Oscillations of the CO oxidation on Rh induced by field-controlled Li coadsorption. Surf Sci 343:169

    Article  CAS  Google Scholar 

  10. Voss C, Kruse N (1995) Field ion microscopy during an oscillating surface reaction: NO/H2 on Pt. Appl Surf Sci 87/88:127

    Article  CAS  Google Scholar 

  11. Müller EW, Panitz JA, McLane SB (1968) The atom probe field ion microscope. Rev Sci Instr 39:83

    Article  Google Scholar 

  12. Panitz JA (1974) The 10 cm atom probe. Rev Sci Instrum 44:1034

    Article  Google Scholar 

  13. Panitz JA (1978) The imaging atom-probe mass spectroscopy. Progr Surf Sci 8:219

    Article  CAS  Google Scholar 

  14. Drachsel W, Nishigaki S, Block JH (1980) Photon-induced field ionization mass spectroscopy. Int J Mass Spectrom Ion Phys 32:333

    Article  CAS  Google Scholar 

  15. Kellog GL, Tsong TT (1980) Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51:1184

    Article  Google Scholar 

  16. Kelly TF, Kamus PP, Larson DJ, Holzman LM, Bajikar SS (1996) On the many advantages of local-electrode atom probes. Ultramicroscopy 62:29

    Article  CAS  Google Scholar 

  17. Müller EW (1970) The atom-probe field ion microscope. Naturwissenschaften 57:222

    Article  Google Scholar 

  18. http://www.imago.com/ (IMAGO Scientific Instruments Corporation, Madison)

  19. http://www.cameca.fr (Cameca Sa, Paris)

  20. Kruse N (1999) Surface reaction kinetics on the atomic scale: studies by means of pulsed field desorption mass spectrometry. Mater Sci Eng A270:75; (2001) Dynamics of surface reactions studied by field emission microscopy and atom-probe mass spectrometry. Ultramicroscopy 89:51

    Article  CAS  Google Scholar 

  21. Ernst N (1993) Appearance energy spectroscopy of field ions. Appl Surf Sci 67:82

    Article  CAS  Google Scholar 

  22. Schmidt WA, Ernst N, Suchorski Y (1993) Local electric fields at individual atomic surface sites: field ion appearance energy measurements. Appl Surf Sci 67:101

    Article  CAS  Google Scholar 

  23. Müller EW (1951) Das Feldionenmikroskop. Z Physik 131:136

    Article  Google Scholar 

  24. Müller EW (1956) Das Auflösungsvermögen des Feldionenmikroskopes. Z Naturforsch 11a:88; (1956) Resolution of the atomic structure of a metal surface by the field ion microscope. J Appl Phys 27:474

    Google Scholar 

  25. Miller MK, Cerezo A, Hetherington MG, Smith GDW (1996) Atom probe field ion microscopy. Oxford University Press, Oxford

    Google Scholar 

  26. Seidman DN (1976) Study of radiation damage in metals with the field-ion and atom-probe microscopes. In: Peterson NL, Harkness SD (eds) Radiation damage in metals. American Society for Metals, Materials Park

    Google Scholar 

  27. Ernst N, Ehrlich G (1986) Field ion microscopy. In: Gonser U (ed) Microscopic methods in metals. Springer, Berlin Heidelberg

    Google Scholar 

  28. Tsong TT (1988) Experimental studies of the behaviour of single adsorbed atoms on solid surfaces. Rep Progr Phys 51:759, and references therein

    Article  CAS  Google Scholar 

  29. Müller EW, Tsong TT (1969) Field ion microscopy, principles and applications. American Elsevier, New York

    Google Scholar 

  30. Tsong TT (1990) Atom-probe field ion microscopy, field ion emission and surfaces and interfaces at atomic resolution. Cambridge University Press, Cambridge, NY

    Book  Google Scholar 

  31. Rendulic KD (1971) Measurements on field adsorption of neon and helium and the field ionization of a helium-neon mixture. Surf Sci 28:285; ibidem, (1973) On field adsorption, ionization rates and gas supply. Surf Sci 34:581

    Article  Google Scholar 

  32. Ernst N, Block JH (1982) Field adsorption of neon on tungsten studied by electron-stimulated field desorption. Surf Sci 117:561

    Article  CAS  Google Scholar 

  33. Schmidt WA, Suchorski Y, Block JH (1994) New aspects of field adsorption and accommodation in field ion imaging. Surf Sci 301:52

    Article  CAS  Google Scholar 

  34. Suchorski Y, Schmidt WA, Ernst N, Block JH, Kreuzer HJ (1995) Electrostatic fields above individual atoms. Progr Surf Sci 48:121

    Article  CAS  Google Scholar 

  35. Gomer R (1994) Field emission, field ionization, and field desorption. Surf Sci 299/300:129, and references therein

    Article  Google Scholar 

  36. Suchorski Y, Ernst N, Schmidt WA, Medvedev VK, Kreuzer HJ, Wang RLC (1996) Field desorption and field evaporation of metals: in memoriam professor J.H. Block. Progr Surf Sci 53:135

    CAS  Google Scholar 

  37. Suchorski Y, Schmidt WA, Block JH, Medvedev VK (1995) Appearance energy spectroscopy of CO+ field ions emitted from W(111). Surf Sci 331/333:277

    Article  Google Scholar 

  38. Suchorski Y (1998) Field ionization of O2 on oxygen-covered Pt(111) and W(111) as studied using field ion appearance energy spectroscopy. Ultramicroscopy 73:139

    Article  CAS  Google Scholar 

  39. Suchorski Y, Medvedev VK, Block JH (1996) Noble-gas-like mechanism of localized field ionization of nitrogen as detected by field ion appearance energy spectroscopy. Appl Surf Sci 94/95:217

    Article  CAS  Google Scholar 

  40. Medvedev VK, Suchorski Y, Voss C, Visart de Bocarme T, Bar T, Kruse N (1998) Oxygen-induced reconstruction and surface oxidation of rhodium. Langmuir 14:6151

    Article  CAS  Google Scholar 

  41. Müller EW (1941) Abreißen adsorbierter Ionen durch hohe elektrische Feldstärken. Naturwissenschaften 29:533

    Article  Google Scholar 

  42. Walko RJ, Müller EW (1972) Self-imaging of a surface by field desorption. Phys Stat Sol A9:K9

    Article  Google Scholar 

  43. Waugh AR, Boyes ED, Southon MJ (1976) Investigations of field evaporation with a field-desorption microscope. Surf Sci 61:109

    Article  CAS  Google Scholar 

  44. Medvedev VK, Suchorski Y, Block JH (1994) Lithium field desorption microscope: a new tool for surface investigations. Ultramicroscopy 53:27

    Article  CAS  Google Scholar 

  45. Medvedev VK, Suchorski Y, Block JH (1994) Investigations of the CO-oxidation on Pt with lithium field desorption microscopy. Appl Surf Sci 76/77:136

    Article  Google Scholar 

  46. Medvedev VK, Suchorski Y, Block JH (1995) Non-linear dynamics of CO oxidation reaction on Pt and Rh as studied with the lithium field desorption microscope. Vacuum 46:563

    Article  CAS  Google Scholar 

  47. Medvedev VK, Suchorski Y, Block JH (1996) Li-mediated feedback mechanism of oscillations in CO oxidation on a Rh field emitter tip. Appl Surf Sci 94/95:200

    Article  CAS  Google Scholar 

  48. Medvedev VK, Suchorski Y, Block JH (1995) Investigation of adsorption and coadsorption of O2 and CO on Rh by O2+ field ion and Li+ field desorption microscopies. Appl Surf Sci 87/88:159

    Article  CAS  Google Scholar 

  49. Miller M (2000) Atom probe tomography: analysis at the atomic level. Kluwer/Plenum, New York

    Book  Google Scholar 

  50. Bunton J, Lenz D, Olson J, Thompson K, Ulfig R, Larson D, Kelly T (2006) Instrumentation developments in atom probe tomography: applications in semiconductor research. Microsc Microanal 12:1730

    Article  Google Scholar 

  51. Suchorski Y, Drachsel W (2011) Field ion microscopy (FIM) and atom probe (AP). In: Friedbacher G, Bubert H (eds) Surface and thin film analysis. Wiley-VCH, Weinheim

    Google Scholar 

  52. Larson DJ, Prosa TJ, Ulfig RM, Geiser BP, Kelly TF (2013) Local electrode atom probe tomography. Springer, New York, p 344

    Book  Google Scholar 

  53. Müller EW, Bahadur K (1956) Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys Rev 102:624

    Article  Google Scholar 

  54. Block JH, Chanderna AW (1975) Field ionization at surfaces investigated by mass spectrometry. In: Chanderna AW (ed) Methods and phenomena, vol 1. Elsevier, Amsterdam, p 379

    Google Scholar 

  55. Tsong TT, Block JH, Nagasaka M, Viswanathan B (1976) Photon stimulated field ionization. J Chem Phys 65:2469

    Article  CAS  Google Scholar 

  56. Goldenfeld IV, Korostyshewsky IZ, Mischanchuk BG (1974) Analysis of field ion energies in a mass spectrometer. Int J Mass Spectrom Ion Phys 13:297

    Article  CAS  Google Scholar 

  57. Forbes RG (1976) A generalised theory of standard field ion appearance energies. Surf Sci 61:221

    Article  CAS  Google Scholar 

  58. Schmidt WA, Suchorski Y, Block JH, Kreuzer HJ, Wang RLC (1995) Field ion appearance energy spectroscopy of CO+ originated from Rh(111) and Au(111) surface step sites. Surf Sci 326:243

    Article  CAS  Google Scholar 

  59. Suchorski Y, Medvedev VK, Block JH, Wang RL, Kreuzer HJ (1996) Field desorption of lithium. Phys Rev B 53:4109

    Article  CAS  Google Scholar 

  60. Schmidt WA, Ernst N (1994) On the binding strength of surface metal atoms in a high electric field–face-specific appearance energy measurements of field evaporated rhodium ions. Vacuum 45:255

    Article  CAS  Google Scholar 

  61. Ehrlich G (1966) Atomic displacements in one- and two-dimensional diffusion. J Chem Phys 44:1050

    Article  CAS  Google Scholar 

  62. Barth JV (2000) Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf Sci Rep 40:75

    Article  CAS  Google Scholar 

  63. Hwang IS, Ho MS, Tsong TT (2001) Scanning tunneling microscope study of dynamic phenomena on clean Si(111) surfaces: Si magic clusters and their role. J Phys Chem Solids 62:1655

    Article  CAS  Google Scholar 

  64. Tsong TT (1973) Field-ion microscope observations of indirect interaction between adatoms on metal surfaces. Phys Rev Lett 31:1207

    Article  CAS  Google Scholar 

  65. Fink H-W, Faulian K, Bauer E (1980) Evidence for nonmonotonic long-range interactions between adsorbed atoms. Phys Rev Lett 44:1008

    Article  CAS  Google Scholar 

  66. Watanabe F, Ehrlich G (1991) Direct observations of pair interactions on a metal: heteropairs on W(110). J Chem Phys 95:6075

    Article  CAS  Google Scholar 

  67. Braun OM, Medvedev VK (1989) Interaction between particles adsorbed on metal surfaces. Sov Phys Usp 32:328

    Article  Google Scholar 

  68. Tsong TT, Kellog GL (1975) Direct observation of the directional walk of single adatoms and the adatom polarizability. Phys Rev B 12:1343

    Article  CAS  Google Scholar 

  69. Tsong TT (2006) Fifty years of seeing atoms. Phys Today 59:31, and references therein

    Article  CAS  Google Scholar 

  70. Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunnelling microscope. Nature 344:524

    Article  CAS  Google Scholar 

  71. Ertl G (2008) Non-linear dynamics: oscillatory kinetics and spatio-temporal pattern formation. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 8, 2nd edn. Wiley-VCH, Weinheim, pp 1492–1516

    Chapter  Google Scholar 

  72. Ertl G (2002) Spiers memorial lecture. Dynamics of surface reactions. Farad Discuss 121:1

    Article  CAS  Google Scholar 

  73. Ertl G (2008) Reactions at surfaces: from atoms to complexity (nobel lecture). Angew Chem Int Ed 47:3524–3535

    Article  CAS  Google Scholar 

  74. Suchorski Y, Imbihl R, Medvedev VK (1998) Compatibility of field emitter studies of oscillating surface reactions with single crystal measurements: catalytic CO oxidation on Pt. Surf Sci 401:392

    Article  CAS  Google Scholar 

  75. Gorodetskii V, Lauterbach J, Rotermund HH, Block JH, Ertl G(1994) Coupling between adjacent crystal planes in heterogeneous catalysis by propagating reaction-diffusion waves. Nature 370:276

    Article  CAS  Google Scholar 

  76. Suchorski Y, Beben J, James EW, Evans JW, Imbihl R (1999) Fluctuation-induced transitions in a bistable surface reaction: catalytic CO oxidation on a Pt field emitter tip. Phys Rev Lett 82:1907

    Article  CAS  Google Scholar 

  77. Suchorski Y, Beben J, Imbihl R (1998) Fluctuations during catalytic CO oxidation on different crystal planes of a Pt field emitter. Progr Surf Sci 59:343

    Article  CAS  Google Scholar 

  78. Kreuzer HJ, Wang RLC (1997) Resonant field ionization: a new imaging mechanism in the field ion microscope. Z Phys Chem 202:127

    Article  CAS  Google Scholar 

  79. Eiswirth M, Möller P, Wetzel K, Imbihl R, Ertl G (1989) Mechanisms of spatial self-organization in isothermal kinetic oscillations during the catalytic CO oxidation on Pt single crystal surfaces. J Chem Phys 90:510

    Article  CAS  Google Scholar 

  80. Moldenhauer S (1996) In situ FTIR Spektroskopie der katalytischen CO Oxidation auf Platinmetallen. PhD thesis, Freie Universität, Berlin

    Google Scholar 

  81. McEwen J-S, Gaspard P, Visart De Bocarme T, Kruse N (2009) Oscillations and bistability in the catalytic formation of water on rhodium in high electric fields. J Phys Chem C 113:17045

    Article  CAS  Google Scholar 

  82. Visart De Bocarme T, Beketov G, Kruse N (2004) Water formation from O2 and H2 on Rh tips: studies by field ion microscopy and pulsed field desorption mass spectrometry. Surf Interface Anal 36:522

    Article  CAS  Google Scholar 

  83. McEwen J-S, Gaspard P, De Decker Y, Barroo C, Visart De Bocarme T, Kruse N (2010) Catalytic reduction of NO2 with hydrogen on Pt field emitter tips: kinetic instabilities on the nanoscale. Langmuir 26:16381

    Article  CAS  Google Scholar 

  84. Chau T-D, Visart De Bocarme T, Kruse N (2004) Kinetic instabilities in the NO/H2 reaction on platinum. Surf Interface Anal 36:528

    Article  CAS  Google Scholar 

  85. Visart de Bocarme T, Kruse N (2011) Field emission techniques for studying surface reactions: applying them to NO–H2 interaction with Pd tips. Ultramicroscopy 111:376

    Article  CAS  Google Scholar 

  86. McEwen J-S, Garcia Cantu Ros A, Gaspard P, Visart de Bocarme T, Kruse N (2010) Non-equilibrium surface pattern formation during catalytic reactions with nanoscale resolution: investigations of the electric field influence. Catal Today 154:75

    Article  CAS  Google Scholar 

  87. Chau TD, Visart de Bocarme T, Kruse N (2004) Formation of N2O and (NO)2 during NO adsorption on Au 3D crystals. Cat Lett 98:85

    Article  CAS  Google Scholar 

  88. Bagot PAJ, Visart de Bocarme T, Cerezo A, Smith GDW (2006) 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces I: instrumentation. Surf Sci 600:3028

    Article  CAS  Google Scholar 

  89. Bagot PAJ, Cerezo A, Smith GDW (2007) 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces II: results on Pt and Pt–Rh. Surf Sci 601:2245

    Article  CAS  Google Scholar 

  90. Bagot PAJ, Kreuzer HJ, Cerezo A, Smith GDW (2011) A model for oxidation-driven surface segregation and transport on Pt-alloys studied by atom probe tomography. Surf Sci 605:1544

    Article  CAS  Google Scholar 

  91. Horsthemke W, Lefever R (1983) Noise-induced transitions: theory and applications in physics, chemistry, and biology. Springer series in synergetics, vol 15, 1st edn

    Google Scholar 

  92. Suchorski Y, Beben J (2003) Surface diffusion by adsorbate density fluctuation measurements. Prog Surf Sci 74:3

    Article  CAS  Google Scholar 

  93. Suchorski Y, Beben J, Weiss H (2004) Noise-induced transitions in CO oxidation on Pt: Haar-Wavelet analysis. In: Aumayr F, Varga P (eds) Symposium on surface science 3S’04. St. Christoph am Arlberg, Austria, Contributions, p 145

    Google Scholar 

  94. Suchorski Y, Beben J, Imbihl R, James EW, Liu D-J, Evans JW (2001) Fluctuations and critical phenomena in catalytic CO oxidation on nanoscale Pt facets. Phys Rev B 63:165417

    Article  CAS  Google Scholar 

  95. Johánek V, Laurin M, Grant AW, Kasemo B, Henry CR, Libuda J (2004) Fluctuations and Bistabilities on Catalyst Nanoparticles. Science 304:1639

    Article  CAS  Google Scholar 

  96. Onsager L (1931) Reciprocal relations in irreversible processes. II. Phys Rev 38:2265

    Article  CAS  Google Scholar 

  97. Kleint C, Gasse H-J (1960) Schrot und Funkelrauschen bei kalter Elektronen-Emission. Z Naturfor 15a:87

    CAS  Google Scholar 

  98. Gomer R (1973) Current fluctuations from small regions of adsorbate covered field emitters: a method for determining diffusion coefficients on single crystal planes. Surf Sci 38:373

    Article  CAS  Google Scholar 

  99. Beben J, Kleint C, Meclewski R (1989) Improved adsorbate fluctuation measurements and their explanation by different diffusion mechanisms: I. Arguments in favour of single adatoms surface diffusion. Surf Sci 213:438

    Article  CAS  Google Scholar 

  100. Suchorski Y, Beben J, Frac A, Medvedev V, Weiss H (2007) The mobility of an alkali promoter as probed in situ during a catalytic reaction: Li in the CO oxidation on Pt. Surf Interface Anal 39:161

    Article  CAS  Google Scholar 

  101. Suchorski Y, Drachsel W, Gorodetskii VV, Medvedev VK, Weiss H (2006) Lifted reconstruction as a feedback mechanism in the oscillating CO oxidation on Pt nanofacets: microscopic evidences. Surf Sci 600:1579

    Article  CAS  Google Scholar 

  102. Suchorski Y, Beben J, Medvedev VK, Block JH (1996) Study of CO surface diffusion on CO/W(111) by analysis of CO+ field ion rate fluctuations. Appl Surf Sci 94/95:207

    Article  CAS  Google Scholar 

  103. Suchorski Y, Beben J, Imbihl R (1998) Surface diffusion measurements from digitized FEM images: analysis of local brightness fluctuations. Ultramicroscopy 73:67

    Article  CAS  Google Scholar 

  104. Medvedev VK, Suchorski Y, Visart de Bocarme T, Bar T, Kruse N (1999) FIM studies of clean and graphitized rhodium using lithium and oxygen as imaging species. Ultramicroscopy 79:239

    Article  CAS  Google Scholar 

  105. Ingram MG, Gomer R (1954) Mass spectrometric analysis of ions from the field microscope. J Chem Phys 22:1279

    Article  Google Scholar 

  106. Ingram MG, Gomer R (1955) Massenspektrometrische Untersuchungen der Feldemission positiver Ionen. Z Naturforsch A 10:863

    Google Scholar 

  107. Beckey HD (1971) Field ionization mass spectrometry. Regamon Press, Oxford

    Google Scholar 

  108. Müller EW (1975) Atom-probe field ion microscopy. In: Chanderna AW (ed) Methods of surface analysis, vol 1. Elsevier, Amsterdam, p 329

    Chapter  Google Scholar 

  109. Kelly TF, Larson DJ (2012) Atom probe tomography 2012. Annu Rev Mater Res 42:1

    Article  CAS  Google Scholar 

  110. Kelly TF, Larson DJ (2000) Local electrode atom probes. Mater Charact 44:59

    Article  CAS  Google Scholar 

  111. Suchorski Y, Medvedev V, Block J (1995) Absolute appearance energy of Li+ ions field- desorbed from W(111). Phys Rev B 51:4734

    Article  CAS  Google Scholar 

  112. Suchorski Y, Hupalo M (2011) Coadsorption of lithium and oxygen on W(1 1 2): nanosized facets versus single crystals. Ultramicroscopy 111:381

    Article  CAS  Google Scholar 

  113. Suchorski Y, Wrobel R, Becker S, Weiss H (2008) CO oxidation on a CeOx/Pt(111) inverse model catalyst surface: catalytic promotion and tuning of kinetic phase diagrams. J Phys Chem C 112:20012

    Article  CAS  Google Scholar 

  114. Sieben B, Suchorski Y, Bozdech G, Ernst N (1997) Interaction of CO and O2 with Pt studied by field ion appearance energy spectroscopy. Z Phys Chem 202:103

    Article  CAS  Google Scholar 

  115. Suchorski Y, Drachsel W, Rupprechter G (2009) High-field versus high-pressure: weakly adsorbed CO species on Pt(111). Ultramicroscopy 109:430

    Article  CAS  Google Scholar 

  116. Gomer R (1990) Diffusion of adsorbates on metal surfaces. Rep Prog Phys 53:917, and references therein

    Article  CAS  Google Scholar 

  117. Dean KA, Chalamala BR (2003) Experimental studies of the cap structure of single-walled carbon nanotubes. J Vac Sci Technol B 21:868

    Article  CAS  Google Scholar 

  118. Saito Y, Hamaguchi K, Hata K, Uchida K, Tasaka Y, Ikazaki F, Yumura M, Kasuya A, Nishina Y (1997) Conical beams from open nanotubes. Nature 389:554

    Article  CAS  Google Scholar 

  119. Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38:169

    Article  CAS  Google Scholar 

  120. Bonard J, Salvetat J, Stockli T, de Heer WA, Forro L, Chatelain A (1998) Field emission from single-wall carbon nanotube films. Appl Phys Lett 73:918

    Article  CAS  Google Scholar 

  121. Wang QH Corrigan TD, Dai JY, Chang RPH and Krauss AR (1997) Field emission from nanotube bundle emitters at low fields. Appl Phys Lett 70:3308

    Article  CAS  Google Scholar 

  122. Schmid H, Fink H-W (1997) Carbon nanotubes are coherent electron sources. Appl Phys Lett 70:2679

    Article  CAS  Google Scholar 

  123. Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jun JE, Lee NS, Park GS, Kim JM (1999) Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett 75:3129

    Article  CAS  Google Scholar 

  124. Hata K, Ariff M, Tohji K, Saito Y (1999) Selective formation of C20 cluster ions by field evaporation from carbon nanotubes. Chem Phys Lett 308:343

    Article  CAS  Google Scholar 

  125. Saito Y, Hata K, Takakura A, Yotani J, Uemura S (2002) Field emission of carbon nanotubes and its application as electron sources of ultra-high luminance light-source devices. Phys B 323:30

    Article  CAS  Google Scholar 

  126. Suchorski Y, Schmidt W, Block J (1994) Local electric fields above individual surface atoms in the presence of field-adsorbed rare gas atoms: an additional field enhancement. Appl Surf Sci 76/77:101

    Article  Google Scholar 

  127. Ksenofontov VA, Gurin VA, Gurin IV, Kolosenko VV, Mikhailovskij IM, Sadanov EV, Mazilova TI, Velikodnaya OA (2007) Low-temperature field ion microscopy of carbon nanotubes. Low Temp Phys 33:858

    Article  CAS  Google Scholar 

  128. Carroll DL, Redlich P, Ajayan PM, Charlier JC, Blase X, DeVita A, Car R (1997) Electronic structure and localized states at carbon nanotube tips. Phys Rev Lett 78:2811

    Article  CAS  Google Scholar 

  129. Kim P, Odom TW, Huang J-L, Lieber CM (1999) Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys Rev Lett 82:1225

    Article  CAS  Google Scholar 

  130. Han S, Ihm J (2000) Role of the localized states in field emission of carbon nanotubes. Phys Rev B 61:9986

    Article  CAS  Google Scholar 

  131. Kuzumaki T, Takamura Y, Ichinose H, Horike Y (2001) Structural change at the carbon-nanotube tip by field emission. Appl Phys Lett 78:3699

    Article  CAS  Google Scholar 

  132. Ehrlich G, Hudda FG (1966) Atomic view of surface self-diffusion: tungsten on tungsten. J Chem Phys 44:1039

    Article  CAS  Google Scholar 

  133. Tsong TT (1972) Direct observation of interactions between individual atoms on tungsten surfaces. Phys Rev B 6:417

    Article  CAS  Google Scholar 

  134. Knorr N, Brune H, Epple M, Hirstein A, Schneider MA, Kern K (2002) Long-range adsorbate interactions mediated by a two-dimensional electron gas. Phys Rev B 65:115420

    Article  CAS  Google Scholar 

  135. Fichthorn KA, Scheffler M (2000) Island nucleation in thin-film epitaxy: a first-principles investigation. Phys Rev Lett 84:5371

    Article  CAS  Google Scholar 

  136. Tsong TT (2007) Field ion microscopy and beyond in some aspects of surface and nanoscience applications. Surf Interface Anal 39:111, and references therein

    Article  CAS  Google Scholar 

  137. Gorodetskii VV, Elokhin VI, Bakker JW, Nieuwenhuys BE (2005) Field electron and field ion microscopy studies of chemical wave propagation in oscillatory reactions on platinum group metals. Catal Today 105:183

    Article  CAS  Google Scholar 

  138. Kruse N, Visart de Bocarme T (2008) Heterogeneous catalysis in high electric fields. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim, p 870

    Google Scholar 

  139. Kreuzer HJ (2004) Physics and chemistry in high electric fields. Surf Interface Anal. 36:372

    Article  CAS  Google Scholar 

  140. Karahka M, Kreuzer HJ (2013) Field evaporation of oxides: a theoretical study. Ultramicroscopy 132:54

    Article  CAS  Google Scholar 

  141. Mazumder B, Vella A, Deconihout B, Al-Kassab T (2011) Evaporation mechanisms of MgO in laser assisted atom probe tomography. Ultramicroscopy 111:571

    Article  CAS  Google Scholar 

  142. Tsong TT, Muller EW (1967) Evaporation mechanisms of MgO in laser assisted atom probe tomography. Appl Phys Lett 9:7

    Article  Google Scholar 

  143. Schmid M, Stadler H, Varga P (1993) Direct observation of surface chemical order by scanning tunneling microscopy. Phys Rev Lett 70:1441

    Article  CAS  Google Scholar 

  144. Suchorski Y, Schmidt WA, Block JH (1993) Local electric fields above individual surface atoms in the presence of field-adsorbed rare gas atoms: an additional field enhancement. In: Okuyama F, Yamamoto M (eds) 40th field emission symposium, Nagoja, p 26

    Google Scholar 

  145. Zhao CX, Li YF, Chen J, Deng SZ, Xu NS (2013) Tunable field emission characteristics of ZnO nanowires coated with varied thickness of lanthanum boride thin films. Ultramicroscopy 132:36

    Article  CAS  Google Scholar 

  146. O’Donnell KM, Fahy A, Barr M, Allison W, Dastoor PC (2012) Field ionization detection of helium using a planar array of carbon nanotubes. Phys Rev B 85:113404

    Article  CAS  Google Scholar 

  147. Holst B, Allison W (1997) An atom-focusing mirror. Nature 390:244

    Article  CAS  Google Scholar 

  148. Holst B, Piskur J, Kostrobiy PP, Markovych BM, Suchorski Y (2009) Field ionization of helium in a supersonic beam: kinetic energy of neutral atoms and probability of their field ionization. Ultramicroscopy 109:413

    Article  CAS  Google Scholar 

  149. Welker J, Giessibl FJ (2012) Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science 336:444

    Article  CAS  Google Scholar 

  150. Fink HW (1986) Point source for electrons and ions. IBM J Res Develop 30:460

    Article  CAS  Google Scholar 

  151. Paul W, Miyahara Y, Grütter P (2012) Implementation of atomically defined field ion microscopy tips in scanning probe microscopy. Nanotechnology 23:335702

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Suchorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suchorski, Y. (2015). Field Ion and Field Desorption Microscopy: Principles and Applications. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_7

Download citation

Publish with us

Policies and ethics