Skip to main content

Numerical and Finite Element Simulations of Nanotips for FIM/FEM

  • Chapter
Surface Science Tools for Nanomaterials Characterization

Abstract

Due to their crucial applications in nanotechnology, several methods have been developed for fabricating nanotips. Such nanotips can be fabricated and characterized in the field ion microscope (FIM), and can be tapered down to a single atom apex. As only a top view of the tip apex can be captured and analyzed in the FIM the overall nanotip shape is still undefined. The FIM images or field emission microscope (FEM) images of single-atom tips (SATs) made by different methods have been found to span a wide range of applied voltages for the respective mode. Here we present theoretical and numerical methods to analyze the distribution of the electric field in the vicinity of the nanotip apex that holds the topmost single atom. We use two different geometries for the nanotip apex, spherical and ellipsoidal shapes, to analyze its electric field. We demonstrate that the electric field at the center of the nano-protrusion is still significantly dominated by the nanotip base and enhanced further at the center of the apex by the nanotip protrusion. The analyses explicitly show that nanotips with broad bases produce even less field than some regular tips, at the same applied voltage. This pronounced effect of the tip base accounts for the relatively high voltages needed for imaging some nanotips in FIM or FEM. In addition, the overall nanotip shape can be estimated based on the radius-voltage relationship. This approach helps in the selection of nanotips for particular applications in ion and electron microscopy, nano lithography, nano characterization and other aspects of nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knoblauch A, Wilbertz C, Miller T, Kalbitzer S (1996) Field electron emission properties of a supertip. J Phys D Appl Phys 29(2):470–473

    Article  CAS  Google Scholar 

  2. Fransen M, Overwijk M, Kruit P (1999) Brightness measurements of a ZrO/W Schottky electron emitter in a transmission electron microscope. Appl Surf Sci 146(1):357–362

    Article  CAS  Google Scholar 

  3. Hasegawa S, Shiraki I, Tanabe F, Hobara R, Kanagawa T, Tanikawa T, Matsuda I, Petersen CL, Hansen TM, Boggild P (2003) Electrical conduction through surface superstructures measured by microscopic four-point probes. Surf Rev Lett 10(06):963–980

    Article  Google Scholar 

  4. Rochet F, Dufour G, Roulet H, Motta N, Sgarlata A, Piancastelli M, De Crescenzi M (1994) Copper phthalocyanine on Si(111)-7× 7 and Si(001)-2× 1: an XPS/AES and STM study. Surf Sci 319(1):10–20

    Article  CAS  Google Scholar 

  5. Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ (2004) Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Phys Chem Chem Phys 6(17):4330–4337

    Article  CAS  Google Scholar 

  6. Avouris P (1995) Manipulation of matter at the atomic and molecular levels. Acc Chem Res 28(3):95–102

    Article  CAS  Google Scholar 

  7. Haiss W, van Zalinge H, Höbenreich H, Bethell D, Schiffrin DJ, Higgins SJ, Nichols RJ (2004) Molecular wire formation from viologen assemblies. Langmuir 20(18):7694–7702

    Article  CAS  Google Scholar 

  8. Joachim C, Gimzewski JK, Schlittler RR, Chavy C (1995) Electronic transparence of a single C60 molecule. Phys Rev Lett 74(11):2102–2105

    Article  CAS  Google Scholar 

  9. Doumergue P, Pizzagalli L, Joachim C, Altibelli A, Baratoff A (1999) Conductance of a finite missing hydrogen atomic line on Si (001)-(2 × 1)-H. Phys Rev B 59(24):15910–15916

    Article  CAS  Google Scholar 

  10. Natelson D, Yu LH, Ciszek JW, Keane ZK, Tour JM (2006) Single-molecule transistors: electron transfer in the solid state. Chem Phys 324(1):267–275

    Article  CAS  Google Scholar 

  11. Gao HJ, Sohlberg K, Xue ZQ, Chen HY, Hou SM, Ma LP, Fang XW, Pang SJ, Pennycook SJ (2000) Reversible, nanometer-scale conductance transitions in an organic complex. Phys Rev Lett 84(8):1780–1783

    Article  CAS  Google Scholar 

  12. Rezeq M, Joachim C, Lwin M, Navarro F (2013) Observations of individual Cu-phthalocyanine molecules deposited on nano-tips in the field emission microscope. In: Grill L, Joachim C (eds) Imaging and manipulating molecular orbitals. Springer, Berlin/Heidelberg, pp 3–13

    Chapter  Google Scholar 

  13. Stafford CA, Cardamone DM, Mazumdar S (2007) The quantum interference effect transistor. Nanotechnology 18(42):424014

    Article  Google Scholar 

  14. Meyer G, Bartels L, Rieder K-H (2001) Atom manipulation with the STM: nanostructuring, tip functionalization, and femtochemistry. Comput Mater Sci 20(3):443–450

    Article  CAS  Google Scholar 

  15. Binh VT, Purcell S, Semet V, Feschet F (1998) Nanotips and nanomagnetism. Appl Surf Sci 130:803–814

    Article  Google Scholar 

  16. Binh VT, Marien J (1988) Characterization of microtips for scanning tunneling microscopy. Surf Sci 202(1):L539–L549

    Article  CAS  Google Scholar 

  17. Fink H-W (1986) Mono-atomic tips for scanning tunneling microscopy. IBM J Res Dev 30(5):460–465

    Article  CAS  Google Scholar 

  18. Fu T-Y, Cheng L-C, Nien C-H, Tsong TT (2001) Method of creating a Pd- covered single-atom sharp W pyramidal tip: mechanism and energetics of its formation. Phys Rev B 64(11):113401–113404

    Article  Google Scholar 

  19. Kuo H-S, Hwang I-S, Fu T-Y, Wu J-Y, Chang C-C, Tsong TT (2004) Preparation and characterization of single-atom tips. Nano Lett 4(12):2379–2382

    Article  CAS  Google Scholar 

  20. Rezeq M, Pitters J, Wolkow R (2006) Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen. J Chem Phys 124:204716

    Article  Google Scholar 

  21. Rezeq M (2013) Fabrication of super ion—electron source and nanoprobe by local electron bombardment. US Patent 8,460,049

    Google Scholar 

  22. Tsong T (1990) Atom probe field ion microscopy. Cambridge University Press, New York

    Book  Google Scholar 

  23. Fink H-W, Stocker W, Schmid H (1990) Holography with low-energy electrons. Phys Rev Lett 65(10):1204–1206

    Article  CAS  Google Scholar 

  24. Schmid H, Fink H-W (1994) Mechanical and electronic manipulation of nanometer-sized wires. Nanotechnology 5(1):26–32

    Article  Google Scholar 

  25. Fursey G (2005) Field emission in vacuum microelectronics. Kluwer/Plenum, New York

    Google Scholar 

  26. Müller E, Tsong T (1969) Field ion microscopy, principles and applications. Elsevier, New York

    Google Scholar 

  27. Rezeq M, Pitters J, Wolkow R (2007) A well defined electron beam source produced by the controlled field assisted etching of metal tips to 1 nm radius. J Scan Probe Microsc 2(1–2):1–4

    Article  CAS  Google Scholar 

  28. Rezeq M, Joachim C, Chandrasekhar N (2009) Nanotip apex modification with atomic precision and single atom tips restoration. Microelectron Eng 86(4):996–998

    Article  CAS  Google Scholar 

  29. Rokuta E, Itagaki T, Ishikawa T, Cho B-L, Kuo H-S, Tsong T, Oshima C (2006) Single-atom coherent field electron emitters for practical application to electron microscopy: buildup controllability, self-repairing function and demountable characteristic. Appl Surf Sci 252(10):3686–3691

    Article  CAS  Google Scholar 

  30. Kuo H-S, Hwang I-S, Fu T-Y, Lin Y-C, Chang C-C, Tsong TT (2006) Noble metal/W (111) single-atom tips and their field electron and ion emission characteristics. Jap J Appl Phys 45(11):8972–8983

    Article  CAS  Google Scholar 

  31. Cui J, Yang L, Wang Y (2013) Simulation study of near-field enhancement on a laser-irradiated AFM metal probe. Laser Phys 23:076003

    Article  Google Scholar 

  32. McKelvey K, Nadappuram BP, Actis P, Takahashi Y, Korchev YE, Matsue T, Robinson C, Unwin PR (2013) Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM). Anal Chem 85:7519–7526

    Article  CAS  Google Scholar 

  33. Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067

    Article  Google Scholar 

  34. Liu WK, Kopacz AM, Lee T, Kim H, Decuzzi P (2013) Immersed molecular electrokinetic finite element method for nano-devices in biotechnology and gene delivery. In: Griebel M, Schweitzer MA (eds), Meshfree methods for partial differential equations VI. Springer, Verlag Berlin Heidelberg, pp 67–74

    Chapter  Google Scholar 

  35. Kopacz AM, Liu WK (2012) Immersed molecular electrokinetic finite element method. Comput Mech 1–7

    Google Scholar 

  36. Kopacz AM, Yeo W, Chung J, Liu WK (2012) Nanoscale sensor analysis using the immersed molecular electrokinetic finite element method. Nanoscale 4:5189–5194

    Article  CAS  Google Scholar 

  37. Brown KA, Westervelt RM, Satzinger KJ (2012) The importance of cantilever dynamics in the interpretation of kelvin probe force microscopy. J Appl Phys 112:064510

    Article  Google Scholar 

  38. Piva PG, DiLabio GA, Pitters JL, Zikovsky J, Rezeq M, Dogel S, Hofer WA, Wolkow RA (2005) Field regulation of single-molecule conductivity by a charged surface atom. Nature 435(7042):658–661

    Article  CAS  Google Scholar 

  39. Joachim C, Martrou D, Rezeq M, Troadec C, Deng J, Chandrasekhar N, Gauthier S (2010) Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J Phys Condens Matter 22(8):084025

    Article  CAS  Google Scholar 

  40. Miller M, Cerezo A, Hetherington M, Smith G (1996) Atom probe field ion microscopy. Clarendon, Oxford

    Google Scholar 

  41. Rezeq M, Joachim C, Chandrasekhar N (2009) Confinement of the field electron emission to atomic sites on ultra sharp tips. Surf Sci 603(4):697–702

    Article  CAS  Google Scholar 

  42. Rose DJ (1956) On the magnification and resolution of the field emission electron microscope. J Appl Phys 27(3):215–220

    Article  CAS  Google Scholar 

  43. Rezeq M (2011) Finite element simulation and analytical analysis for nano field emission sources that terminate with a single atom: a new perspective on nanotips. Appl Surf Sci 258(5):1750–1755

    Article  CAS  Google Scholar 

  44. Rezeq M (2013) Nanotips with a single atom end as ideal sources of electron and ion beams: modeling of the nanotip shape. Microelectron Eng 102:2–5

    Article  CAS  Google Scholar 

  45. Yuasa K, Shimoi A, Ohba I, Oshima C (2002) Modified fowler-nordheim field emission formulae from a nonplanar emitter model. Surf Sci 520(1):18–28

    Article  CAS  Google Scholar 

  46. Peridier VJ, Pan LH, Sullivan TE (1995) Methods for calculating electrostatic quantities due to a free charge in a nanoscale three-dimensional tip/base junction. J Appl Phys 78(8):4888–4894

    Article  CAS  Google Scholar 

  47. Feenstra RM (2003) Electrostatic potential for a hyperbolic probe tip near a semiconductor. J Vacuum Sci Tech B: Microelectron Nanometer Struct 21(5):2080–2088

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moh’d Rezeq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rezeq, M., Ali, A.E., Homouz, D. (2015). Numerical and Finite Element Simulations of Nanotips for FIM/FEM. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_16

Download citation

Publish with us

Policies and ethics