Skip to main content

Imaging and Characterization of Magnetic Micro- and Nanostructures Using Force Microscopy

  • Chapter
Surface Science Tools for Nanomaterials Characterization
  • 2705 Accesses

Abstract

This chapter introduces into the principles of different force microscopic approaches that sense a magnetic probe-sample force to study magnetism of micro- and (sub)nanometer-sized objects. Although all of them are capable to characterize magnetic properties on small length scales, their applicability depends strongly on the object (e.g., nm-thin magnetic films, magnetic nanoparticles, electronic and nuclear spins) to be investigated. A comparison of their application range will be given, which allows identifying the method most suitable for the intended measurement. Finally, the discussion of each approach is complemented by an overview about current exemplary applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman MR, Choi BC (2001) Advances in magnetic microscopy. Science 294(5546):1484–1488

    Article  CAS  Google Scholar 

  2. Dan Dahlberg E, Proksch R (1999) Magnetic microscopies: the new additions. J Magn Magn Mater 200(1):720–728

    Article  CAS  Google Scholar 

  3. Allenspach R (1994) Ultrathin films: magnetism on the microscopic scale. J Magn Magn Mater 129(2):160–185

    Article  CAS  Google Scholar 

  4. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180

    Article  CAS  Google Scholar 

  5. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Physical Rev Lett 49(1):57

    Article  Google Scholar 

  6. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930

    Article  CAS  Google Scholar 

  7. Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Surf Sci 189:1–6

    Article  Google Scholar 

  8. Saenz JJ, Garcia N, Grutter P, Meyer E, Heinzelmann H, Wiesendanger R, Guntherodt HJ et al (1987) Observation of magnetic forces by the atomic force microscope. J Appl Phys 62(10):4293–4295

    Article  Google Scholar 

  9. Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455–1457

    Article  Google Scholar 

  10. Rugar D, Mamin HJ, Guethner P, Lambert SE, Stern JE, McFadyen I, Yogi T (1990) Magnetic force microscopy: general principles and application to longitudinal recording media. J Appl Phys 68(3):1169–1183

    Article  CAS  Google Scholar 

  11. Wiesendanger R, Güntherodt HJ, Güntherodt G, Gambino RJ, Ruf R (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65(2):247

    Article  CAS  Google Scholar 

  12. Betzig E, Trautman JK, Wolfe R, Gyorgy EM, Finn PL, Kryder MH, Chang CH (1992) Near-field magneto-optics and high density data storage. Appl Phys Lett 61(2):142–144

    Article  CAS  Google Scholar 

  13. Silva TJ, Schultz S, Weller D (1994) Scanning near-field optical microscope for the imaging of magnetic domains in optically opaque materials. Appl Phys Lett 65(6):658–660

    Article  CAS  Google Scholar 

  14. Chapman JN, McFadyen IR, McVitie S (1990) Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures. Magn, IEEE Trans 26(5):1506–1511

    Article  CAS  Google Scholar 

  15. Kirk KJ, Chapman JN, Wilkinson CDW (1999) Lorentz microscopy of small magnetic structures. J Appl Phys 85(8):5237–5242

    Article  CAS  Google Scholar 

  16. Lichte H (1986) Electron holography approaching atomic resolution. Ultramicroscopy 20(3):293–304

    Article  CAS  Google Scholar 

  17. Tonomura A (1987) Applications of electron holography. Rev Mod Phys 59(3):639

    Article  CAS  Google Scholar 

  18. Kirtley JR, Wikswo JP Jr (1999) Scanning SQUID microscopy. Annu Rev mater Sci 29(1):117–148

    Article  CAS  Google Scholar 

  19. Chang AM, Hallen HD, Harriott L, Hess HF, Kao HL, Kwo J, Chang TY et al (1992) Scanning hall probe microscopy. Appl Phys Lett 61(16):1974–1976

    Article  CAS  Google Scholar 

  20. Oral A, Bending SJ, Henini M (1996) Real-time scanning hall probe microscopy. Appl Phys Lett 69(9):1324–1326

    Article  CAS  Google Scholar 

  21. Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Wrachtrup J et al (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455(7213):648–651

    Article  CAS  Google Scholar 

  22. Kolkowitz S, Unterreithmeier QP, Bennett SD, Lukin MD (2012) Sensing distant nuclear spins with a single electron spin. Phys Rev Lett 109(13):137601

    Article  CAS  Google Scholar 

  23. Grinolds MS, Hong S, Maletinsky P, Luan L, Lukin MD, Walsworth RL, Yacoby A (2013) Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat Phys 9:215–219

    Article  CAS  Google Scholar 

  24. Bode M (2003) Spin-polarized scanning tunnelling microscopy. Rep Prog Phys 66(4):523

    Article  CAS  Google Scholar 

  25. Wiebe J, Zhou L, Wiesendanger R (2011) Atomic magnetism revealed by spin-resolved scanning tunnelling spectroscopy. J Phys D Appl Phys 44(46):464009

    Article  CAS  Google Scholar 

  26. Wiesendanger R (2011) Single-atom magnetometry. Curr Opin Solid State Mater Sci 15(1):1–7

    Article  CAS  Google Scholar 

  27. Butt HJ (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60(6):1438–1444

    Article  CAS  Google Scholar 

  28. Hartmann U (1991) van der Waals interactions between sharp probes and flat sample surfaces. Phys Rev B 43(3):2404

    Article  CAS  Google Scholar 

  29. Argento C, French RH (1996) Parametric tip model and force–distance relation for Hamaker constant determination from atomic force microscopy. J Appl Phys 80(11):6081–6090

    Article  CAS  Google Scholar 

  30. Erlandsson R, Hadziioannou G, Mate CM, McClelland GM, Chiang S (1988) Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip. J Chem Phys 89:5190

    Article  CAS  Google Scholar 

  31. Mate CM, McClelland GM, Erlandsson R, Chiang S (1993) Atomic-scale friction of a tungsten tip on a graphite surface. In: Scanning tunneling microscopy. Springer Netherlands, pp 226–229. ISBN: 978-0-7923-2065-4

    Google Scholar 

  32. Vanossi A, Manini N, Urbakh M, Zapperi S, Tosatti E (2013) Colloquium: modeling friction: from nanoscale to mesoscale. Rev Mod Phys 85:529–552

    Article  CAS  Google Scholar 

  33. Borkovec M, Papastavrou G (2008) Interactions between solid surfaces with adsorbed polyelectrolytes of opposite charge. Curr Opin Colloid Interface Sci 13(6):429–437

    Article  CAS  Google Scholar 

  34. Block S, Helm CA (2007) Measurement of long-ranged steric forces between polyelectrolyte layers physisorbed from 1 M NaCl. Phys Rev E 76(3):030801

    Article  CAS  Google Scholar 

  35. Block S, Helm CA (2008) Conformation of poly (styrene sulfonate) layers physisorbed from high salt solution studied by force measurements on two different length scales. J Phys Chem B 112(31):9318–9327

    Article  CAS  Google Scholar 

  36. Drechsler A, Synytska A, Uhlmann P, Elmahdy MM, Stamm M, Kremer F (2009) Interaction forces between microsized silica particles and weak polyelectrolyte brushes at varying pH and salt concentration. Langmuir 26(9):6400–6410

    Article  CAS  Google Scholar 

  37. Quate CF (1994) The AFM as a tool for surface imaging. Surf Sci 299:980–995

    Article  Google Scholar 

  38. Meyer E, Hug HJ, Bennewitz R (2004) Scanning probe microscopy: the lab on a tip. Springer, Berlin

    Book  Google Scholar 

  39. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1):1–152

    Article  CAS  Google Scholar 

  40. Bhushan B (ed) (2010) Springer handbook of nanotechnology. Springer-Verlag Berlin Heidelberg, ISBN: 978-3-642-02524-2

    Google Scholar 

  41. Barth C, Foster AS, Henry CR, Shluger AL (2011) Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv Mater 23(4):477–501

    Article  CAS  Google Scholar 

  42. Senden TJ (2001) Force microscopy and surface interactions. Curr Opin Colloid Interface Sci 6(2):95–101

    Article  CAS  Google Scholar 

  43. Stokey WF (1989) Shock and vibration handbook. McGraw-Hill, New York, pp 7.1–7.44

    Google Scholar 

  44. Landau LD, Lifshitz EM (1986) Theory of elasticity, 3rd edn. Oxford, Pergamon

    Google Scholar 

  45. Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84(1):64–76

    Article  CAS  Google Scholar 

  46. Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6(1):1

    Article  Google Scholar 

  47. Salapaka MV, Bergh HS, Lai J, Majumdar A, McFarland E (1997) Multi-mode noise analysis of cantilevers for scanning probe microscopy. J Appl Phys 81(6):2480–2487

    Article  CAS  Google Scholar 

  48. Green CP, Lioe H, Cleveland JP, Proksch R, Mulvaney P, Sader JE (2004) Normal and torsional spring constants of atomic force microscope cantilevers. Rev Sci Instrum 75(6):1988–1996

    Article  CAS  Google Scholar 

  49. Chester W (1979) Oscillations. In: Mechanics. George Allen & Unwin London, pp 136–173

    Google Scholar 

  50. Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668

    Article  Google Scholar 

  51. Giessibl FJ (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B 56(24):16010

    Article  CAS  Google Scholar 

  52. Guggisberg M, Bammerlin M, Loppacher C, Pfeiffer O, Abdurixit A, Barwich V, Güntherodt HJ et al (2000) Separation of interactions by noncontact force microscopy. Phys Rev B 61(16):11151

    Article  CAS  Google Scholar 

  53. Giessibl FJ (2001) A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl Phys Lett 78(1):123–125

    Article  CAS  Google Scholar 

  54. Sader JE, Jarvis SP (2004) Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl Phys Lett 84(10):1801–1803

    Article  CAS  Google Scholar 

  55. Sader JE, Uchihashi T, Higgins MJ, Farrell A, Nakayama Y, Jarvis SP (2005) Quantitative force measurements using frequency modulation atomic force microscopy – theoretical foundations. Nanotechnology 16(3):S94

    Article  CAS  Google Scholar 

  56. Welker J, Illek E, Giessibl FJ (2012) Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy. Beilstein J Nanotechnol 3(1):238–248

    Article  CAS  Google Scholar 

  57. Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64(2):403–405

    Article  CAS  Google Scholar 

  58. Hutter JL, Bechhoefer J (1993) Calibration of atomic‐force microscope tips. Rev Sci Instrum 64:1868

    Article  CAS  Google Scholar 

  59. Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66(7):3789–3798

    Article  CAS  Google Scholar 

  60. Sader JE, Chon JW, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967

    Article  CAS  Google Scholar 

  61. Chon JW, Mulvaney P, Sader JE (2000) Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. J Appl Phys 87(8):3978–3988

    Article  CAS  Google Scholar 

  62. Burnham NA, Chen X, Hodges CS, Matei GA, Thoreson EJ, Roberts CJ, Tendler SJB et al (2003) Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14(1):1

    Article  CAS  Google Scholar 

  63. Cook SM, Schäffer TE, Chynoweth KM, Wigton M, Simmonds RW, Lang KM (2006) Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17(9):2135

    Article  CAS  Google Scholar 

  64. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Elings V et al (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64(13):1738–1740

    Article  CAS  Google Scholar 

  65. Garcia R, San Paulo A (1999) Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys Rev B 60(7):4961

    Article  CAS  Google Scholar 

  66. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope–force mapping and profiling on a sub 100 Å scale. J Appl Phys 61(10):4723–4729

    Article  CAS  Google Scholar 

  67. Anselmetti D, Luthi R, Meyer E, Richmond T, Dreier M, Frommer JE, Guntherodt HJ (1994) Attractive-mode imaging of biological materials with dynamic force microscopy. Nanotechnology 5(2):87

    Article  CAS  Google Scholar 

  68. Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6):197–301

    Article  CAS  Google Scholar 

  69. Higgins MJ, Riener CK, Uchihashi T, Sader JE, McKendry R, Jarvis SP (2005) Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems. Nanotechnology 16(3):S85

    Article  CAS  Google Scholar 

  70. Grütter P, Mamin HJ, Rugar D (1992) Magnetic Force Microscopy (MFM). In: Wiesendanger R, Güntherodt H-J (eds) Scanning tunneling microscopy II. Springer series in surface sciences 28. Springer, Berlin, pp 151–207

    Google Scholar 

  71. Giessibl FJ, Pielmeier F, Eguchi T, An T, Hasegawa Y (2011) Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys Rev B 84(12):125409

    Article  CAS  Google Scholar 

  72. Yuan CW, Batalla E, Zacher M, De Lozanne AL, Kirk MD, Tortonese M (1994) Low temperature magnetic force microscope utilizing a piezoresistive cantilever. Appl Phys Lett 65(10):1308–1310

    Article  CAS  Google Scholar 

  73. Giessibl FJ, Trafas BM (1994) Piezoresistive cantilevers utilized for scanning tunneling and scanning force microscope in ultrahigh vacuum. Rev Sci Instrum 65(6):1923–1929

    Article  CAS  Google Scholar 

  74. Arlett JL, Maloney JR, Gudlewski B, Muluneh M, Roukes ML (2006) Self-sensing micro-and nanocantilevers with attonewton-scale force resolution. Nano Lett 6(5):1000–1006

    Article  CAS  Google Scholar 

  75. Alexander SLOJVPKM, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Gurley J et al (1989) An atomic-resolution atomic-force microscope implemented using an optical lever. J Appl Phys 65(1):164–167

    Article  CAS  Google Scholar 

  76. Putman CA, De Grooth BG, Van Hulst NF, Greve J (1992) A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. J Appl Phys 72(1):6–12

    Article  Google Scholar 

  77. Colchero J, Cuenca M, Martinez JF, Abad J, García BP, Palacios-Lidón E, Abellán J (2011) Thermal frequency noise in dynamic scanning force microscopy. J Appl Phys 109(2):024310–024310

    Article  CAS  Google Scholar 

  78. Erlandsson R, McClelland GM, Mate CM, Chiang S (1988) Atomic force microscopy using optical interferometry. J Vacuum Sci Technol A Vacuum Surf Films 6(2):266–270

    Article  CAS  Google Scholar 

  79. Rugar D, Mamin HJ, Erlandsson R, Stern JE, Terris BD (1988) Force microscope using a fiber-optic displacement sensor. Rev Sci Instrum 59(11):2337–2340

    Article  CAS  Google Scholar 

  80. Hoogenboom BW, Frederix PLTM, Yang JL, Martin S, Pellmont Y, Steinacher M, Hug HJ et al (2005) A Fabry–Perot interferometer for micrometer-sized cantilevers. Appl Phys Lett 86(7):074101–074101

    Article  CAS  Google Scholar 

  81. Poggio M, Degen CL (2010) Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21(34):342001

    Article  CAS  Google Scholar 

  82. Sidles JA, Garbini JL, Drobny GP (1992) The theory of oscillator coupled magnetic resonance with potential applications to molecular imaging. Rev Sci Instrum 63(8):3881–3899

    Article  CAS  Google Scholar 

  83. Sidles JA, Rugar D (1993) Signal-to-noise ratios in inductive and mechanical detection of magnetic resonance. Phys Rev Lett 70(22):3506

    Article  CAS  Google Scholar 

  84. Kaiser U, Schwarz A, Wiesendanger R (2007) Magnetic exchange force microscopy with atomic resolution. Nature 446(7135):522–525

    Article  CAS  Google Scholar 

  85. Porthun S, Abelmann L, Lodder C (1998) Magnetic force microscopy of thin film media for high density magnetic recording. J Magn Magn Mater 182(1):238–273

    Article  CAS  Google Scholar 

  86. Hartmann U (1999) Magnetic force microscopy. Ann Rev Mater Sci 29(1):53–87

    Article  CAS  Google Scholar 

  87. Koblischka MR, Hartmann U (2003) Recent advances in magnetic force microscopy. Ultramicroscopy 97(1):103–112

    Article  CAS  Google Scholar 

  88. Zhu X, Grütter P (2004) Imaging, manipulation, and spectroscopic measurements of nanomagnets by magnetic force microscopy. MRS Bull 29(07):457–462

    Article  CAS  Google Scholar 

  89. Schwarz A, Wiesendanger R (2008) Magnetic sensitive force microscopy. Nano Today 3(1):28–39

    Article  CAS  Google Scholar 

  90. Agarwal G (2009) Characterization of magnetic nanoparticles using magnetic force microscopy. Nanotechnologies for the life sciences. In: Kumar CSSR (ed) Nanotechnologies for the life sciences, vol 4, Magnetic Nanomaterials. Wiley, Weinheim

    Google Scholar 

  91. Wadas A, Grütter P (1989) Theoretical approach to magnetic force microscopy. Phys Rev B 39(16):12013

    Article  CAS  Google Scholar 

  92. Hartmann U (1989) The point dipole approximation in magnetic force microscopy. Phys Lett A 137(9):475–478

    Article  Google Scholar 

  93. Hartmann U (1990) Theory of magnetic force microscopy. J Vacuum Sci Technol A Vacuum Surfaces Films 8(1):411–415

    Article  CAS  Google Scholar 

  94. Schönenberger C, Alvarado SF (1990) Understanding magnetic force microscopy. Zeitschrift für Physik B Condensed Matter 80(3):373–383

    Article  Google Scholar 

  95. Wright CD, Hill EW (1995) Reciprocity in magnetic force microscopy. Appl Phys Lett 67(3):433–435

    Article  CAS  Google Scholar 

  96. Hubert A, Rave W, Tomlinson SL (1997) Imaging magnetic charges with magnetic force microscopy. Phys Status Solidi B Basic Res 204:817–828

    Article  CAS  Google Scholar 

  97. Hug HJ, Stiefel B, Van Schendel PJA, Moser A, Hofer R, Martin S, OHandley RC et al (1998) Quantitative magnetic force microscopy on perpendicularly magnetized samples. J Appl Phys 83(11):5609–5620

    Article  CAS  Google Scholar 

  98. Häberle T, Haering F, Pfeifer H, Han L, Kuerbanjiang B, Wiedwald U, Koslowski B et al (2012) Towards quantitative magnetic force microscopy: theory and experiment. New J Phys 14(4):043044

    Article  CAS  Google Scholar 

  99. Babcock KL, Elings VB, Shi J, Awschalom DD, Dugas M (1996) Field‐dependence of microscopic probes in magnetic force microscopy. Appl Phys Lett 69(5):705–707

    Article  CAS  Google Scholar 

  100. Kong L, Chou SY (1997) Quantification of magnetic force microscopy using a micronscale current ring. Appl Phys Lett 70(15):2043–2045

    Article  CAS  Google Scholar 

  101. Goddenhenrich T, Lemke H, Muck M, Hartmann U, Heiden C (1990) Probe calibration in magnetic force microscopy. Appl Phys Lett 57(24):2612–2614

    Article  Google Scholar 

  102. Lohau J, Kirsch S, Carl A, Dumpich G, Wassermann EF (1999) Quantitative determination of effective dipole and monopole moments of magnetic force microscopy tips. J Appl Phys 86(6):3410–3417

    Article  CAS  Google Scholar 

  103. Van Schendel PJA, Hug HJ, Stiefel B, Martin S, Guntherodt HJ (2000) A method for the calibration of magnetic force microscopy tips. J Appl Phys 88(1):435–445

    Article  Google Scholar 

  104. Kebe T, Carl A (2004) Calibration of magnetic force microscopy tips by using nanoscale current-carrying parallel wires. J Appl Phys 95(3):775–792

    Article  CAS  Google Scholar 

  105. Jaafar M, Asenjo A, Vazquez M (2008) Calibration of coercive and stray fields of commercial magnetic force microscope probes. Nanotechnol IEEE Trans 7(3):245–250

    Article  Google Scholar 

  106. Ruhrig M, Porthun S, Lodder JC, McVitie S, Heyderman LJ, Johnston AB, Chapman JN (1996) Electron beam fabrication and characterization of high‐resolution magnetic force microscopy tips. J Appl Phys 79(6):2913–2919

    Article  Google Scholar 

  107. Leinenbach P, Memmert U, Schelten J, Hartmann U (1999) Fabrication and characterization of advanced probes for magnetic force microscopy. Appl Surf Sci 144:492–496

    Article  Google Scholar 

  108. Arie T, Nishijima H, Akita S, Nakayama Y (2000) Carbon-nanotube probe equipped magnetic force microscope. J Vacuum Sci Technol B Microelectron Nanometer Struct 18(1):104–106

    Article  CAS  Google Scholar 

  109. Ono T, Esashi M (2003) Magnetic force and optical force sensing with ultrathin silicon resonator. Rev Sci Instrum 74(12):5141–5146

    Article  CAS  Google Scholar 

  110. Gao L, Yue LP, Yokota T, Skomski R, Liou SH, Takahoshi H, Ishio S et al (2004) Focused ion beam milled CoPt magnetic force microscopy tips for high resolution domain images. Magn IEEE Trans 40(4):2194–2196

    Article  CAS  Google Scholar 

  111. Kuramochi H, Uzumaki T, Yasutake M, Tanaka A, Akinaga H, Yokoyama H (2005) A magnetic force microscope using CoFe-coated carbon nanotube probes. Nanotechnology 16(1):24

    Article  CAS  Google Scholar 

  112. Wolny F, Weissker U, Muhl T, Leonhardt A, Menzel S, Winkler A, Buchner B (2008) Iron-filled carbon nanotubes as probes for magnetic force microscopy. J Appl Phys 104(6):064908–064908

    Article  CAS  Google Scholar 

  113. Wolny F, Mühl T, Weissker U, Lipert K, Schumann J, Leonhardt A, Büchner B (2010) Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy. Nanotechnology 21(43):435501

    Article  CAS  Google Scholar 

  114. Foss S, Proksch R, Dahlberg ED, Moskowitz B, Walsh B (1996) Localized micromagnetic perturbation of domain walls in magnetite using a magnetic force microscope. Appl Phys Lett 69(22):3426–3428

    Article  CAS  Google Scholar 

  115. Pokhil TG, Moskowitz BM (1997) Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy. J Geophys Res 102(B10):22681–22

    Article  CAS  Google Scholar 

  116. McVitie S, White GS, Scott J, Warin P, Chapman JN (2001) Quantitative imaging of magnetic domain walls in thin films using Lorentz and magnetic force microscopies. J Appl Phys 90(10):5220–5227

    Article  CAS  Google Scholar 

  117. Asenjo A, García D, García JM, Prados C, Vázquez M (2000) Magnetic force microscopy study of dense stripe domains in Fe-B/Co-Si-B multilayers and the evolution under an external applied field. Phys Rev B 62(10):6538

    Article  CAS  Google Scholar 

  118. Donzelli O, Palmeri D, Musa L, Casoli F, Albertini F, Pareti L, Turilli G (2003) Perpendicular magnetic anisotropy and stripe domains in ultrathin Co/Au sputtered multilayers. J Appl Phys 93(12):9908–9912

    Article  CAS  Google Scholar 

  119. Ehresmann A, Krug I, Kronenberger A, Ehlers A, Engel D (2004) In-plane magnetic pattern separation in NiFe/NiO and Co/NiO exchange biased bilayers investigated by magnetic force microscopy. J Magn Magn Mater 280(2):369–376

    Article  CAS  Google Scholar 

  120. Gottwald M, Hehn M, Lacour D, Hauet T, Montaigne F, Mangin S, Berger A et al (2012) Asymmetric magnetization reversal in dipolarly coupled spin valve structures with perpendicular magnetic anisotropy. Phys Rev B 85(6):064403

    Article  CAS  Google Scholar 

  121. Gibson GA, Schultz S (1993) Magnetic force microscope study of the micromagnetics of submicrometer magnetic particles. J Appl Phys 73(9):4516–4521

    Article  CAS  Google Scholar 

  122. Kleiber M, Kümmerlen F, Löhndorf M, Wadas A, Weiss D, Wiesendanger R (1998) Magnetization switching of submicrometer Co dots induced by a magnetic force microscope tip. Phys Rev B 58(9):5563

    Article  CAS  Google Scholar 

  123. Lohau J, Carl A, Kirsch S, Wassermann EF (2001) Magnetization reversal and coercivity of a single-domain Co/Pt dot measured with a calibrated magnetic force microscope tip. Appl Phys Lett 78(14):2020–2022

    Article  CAS  Google Scholar 

  124. Raabe J, Pulwey R, Sattler R, Schweinbock T, Zweck J, Weiss D (2000) Magnetization pattern of ferromagnetic nanodisks. J Appl Phys 88(7):4437–4439

    Article  CAS  Google Scholar 

  125. Pulwey R et al (2001) Switching behavior of vortex structures in nanodisks. Magn IEEE Trans 37.4:2076–2078

    Article  Google Scholar 

  126. Garcıa JM, Thiaville A, Miltat J (2002) MFM imaging of nanowires and elongated patterned elements. J Magn Magn Mater 249(1):163–169

    Article  Google Scholar 

  127. Pulwey R, Zolfl M, Bayreuther G, Weiss D (2002) Magnetic domains in epitaxial nanomagnets with uniaxial or fourfold crystal anisotropy. J Appl Phys 91(10):7995–7997

    Article  CAS  Google Scholar 

  128. Rahm M, Schneider M, Biberger J, Pulwey R, Zweck J, Weiss D, Umansky V (2003) Vortex nucleation in submicrometer ferromagnetic disks. Appl Phys Lett 82(23):4110–4112

    Article  CAS  Google Scholar 

  129. Rahm M, Biberger J, Umansky V, Weiss D (2003) Vortex pinning at individual defects in magnetic nanodisks. J Appl Phys 93(10):7429–7431

    Article  CAS  Google Scholar 

  130. Garcia-Martin JM, Thiaville A, Miltat J, Okuno T, Vila L, Piraux L (2004) Imaging magnetic vortices by magnetic force microscopy: experiments and modelling. J Phys D Appl Phys 37(7):965

    Article  CAS  Google Scholar 

  131. Chang J, Mironov VL, Gribkov BA, Fraerman AA, Gusev SA, Vdovichev SN (2006) Magnetic state control of ferromagnetic nanodots by magnetic force microscopy probe. J Appl Phys 100(10):104304–104304

    Article  CAS  Google Scholar 

  132. Takagaki Y, Jenichen B, Herrmann C, Wiebicke E, Däweritz L, Ploog KH (2006) First-order phase transition in MnAs disks on GaAs (001). Phys Rev B 73(12):125324

    Article  CAS  Google Scholar 

  133. Jenichen B, Kaganer VM, Takagaki Y, Herrmann C, Ploog KH, Dudzik E, Feyerherm R (2007) First order phase transition in MnAs nanodisks. Phys Status Solidi (a) 204(8):2772–2777

    Article  CAS  Google Scholar 

  134. Hanson M, Bručas R, Kazakova O (2007) Effects of size and interactions on the magnetic behaviour of elliptical (001) Fe nanoparticles. J Magn Magnetic Mater 316(2):181–183

    Article  CAS  Google Scholar 

  135. Zhu X, Grutter P, Metlushko V, Hao Y, Castano FJ, Ross CA, Smith HI et al (2003) Construction of hysteresis loops of single domain elements and coupled permalloy ring arrays by magnetic force microscopy. J Appl Phys 93(10):8540–8542

    Article  CAS  Google Scholar 

  136. Roy PE, Lee JH, Trypiniotis T, Anderson D, Jones GAC, Tse D, Barnes CHW (2009) Antivortex domain walls observed in permalloy rings via magnetic force microscopy. Phys Rev B 79(6):060407

    Article  CAS  Google Scholar 

  137. Weissker U, Loffler M, Wolny F, Lutz MU, Scheerbaum N, Klingeler R, Buchner B et al (2009) Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy. J Appl Phys 106(5):054909–054909

    Article  CAS  Google Scholar 

  138. Mironov VL, Ermolaeva OL, Gusev SA, Klimov AY, Rogov VV, Gribkov BA, Petrashov VT et al (2010) Antivortex state in crosslike nanomagnets. Phys Rev B 81(9):094436

    Article  CAS  Google Scholar 

  139. Mironov VL, Ermolaeva OL, Skorohodov EV, Klimov AY (2012) Field-controlled domain wall pinning-depinning effects in a ferromagnetic nanowire-nanoislands system. Phys Rev B 85(14):144418

    Article  CAS  Google Scholar 

  140. Suzuki H, Tanaka T, Sasaki T, Nakamura N, Matsunaga T, Mashiko S (1998) High-resolution magnetic force microscope images of a magnetic particle chain extracted from magnetic bacteria AMB-1. Jpn J Appl Phys 37:L1343–L1345

    Article  Google Scholar 

  141. Albrecht M, Janke V, Sievers S, Siegner U, Schüler D, Heyen U (2005) Scanning force microspy study of biogenic nanoparticles for medical applications. J Magn Magn Mater 290:269–271

    Article  CAS  Google Scholar 

  142. Krishna H, Miller C, Longstreth-Spoor L, Nussinov Z, Gangopadhyay AK, Kalyanaraman R (2008) Unusual size-dependent magnetization in near hemispherical Co nanomagnets on SiO2 from fast pulsed laser processing. J Appl Phys 103(7):073902–073902

    Article  CAS  Google Scholar 

  143. Schreiber S, Savla M, Pelekhov DV, Iscru DF, Selcu C, Hammel PC, Agarwal G (2008) Magnetic force microscopy of superparamagnetic nanoparticles. Small 4(2):270–278

    Article  CAS  Google Scholar 

  144. Moskalenko AV, Yarova PL, Gordeev SN, Smirnov SV (2010) Single protein molecule mapping with magnetic atomic force microscopy. Biophys J 98(3):478–487

    Article  CAS  Google Scholar 

  145. Block S, Glöckl G, Weitschies W, Helm CA (2011) Direct visualization and identification of biofunctionalized nanoparticles using a magnetic atomic force microscope. Nano Lett 11(9):3587–3592

    Article  CAS  Google Scholar 

  146. Dietz C, Herruzo ET, Lozano JR, Garcia R (2011) Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid. Nanotechnology 22(12):125708

    Article  CAS  Google Scholar 

  147. Sievers S, Braun KF, Eberbeck D, Gustafsson S, Olsson E, Schumacher HW, Siegner U (2012) Quantitative measurement of the magnetic moment of individual magnetic nanoparticles by magnetic force microscopy. Small 8(17):2675–2679

    Article  CAS  Google Scholar 

  148. Yuan CW, Zheng Z, De Lozanne AL, Tortonese M, Rudman DA, Eckstein JN (1996) Vortex images in thin films of YBa 2 Cu 3 O 7-x and Bi 2 Sr 2 Ca 1 Cu 2 O 8+ x obtained by low‐temperature magnetic force microscopy. J Vacuum Sci Technol B Microelectron Nanometer Struct 14(2):1210–1213

    Article  CAS  Google Scholar 

  149. Auslaender OM, Luan L, Straver EW, Hoffman JE, Koshnick NC, Zeldov E, Moler KA et al (2008) Mechanics of individual isolated vortices in a cuprate superconductor. Nat Phys 5(1):35–39

    Article  CAS  Google Scholar 

  150. Schwarz A, Liebmann M, Pi UH, Wiesendanger R (2010) Real space visualization of thermal fluctuations in a triangular flux-line lattice. New J Phys 12(3):033022

    Article  CAS  Google Scholar 

  151. Brown JWF (1962) Magnetostatic principles in ferromagnetism, vol 112. North-Holland Publ. Co, Amsterdam

    Google Scholar 

  152. Wadas A, Guntherodt HJ (1990) The topography effect on magnetic images in magnetic force microscopy. J Appl Phys 68(9):4767–4771

    Article  CAS  Google Scholar 

  153. Giessibl FJ (2006) Higher-harmonic atomic force microscopy. Surf Interface Anal 38(12–13):1696–1701

    Article  CAS  Google Scholar 

  154. Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226

    Article  CAS  Google Scholar 

  155. Schneider M, Müller-Pfeiffer S, Zinn W (1996) Magnetic force microscopy of domain wall fine structures in iron films. J Appl Phys 79(11):8578–8583

    Article  CAS  Google Scholar 

  156. Fannin PC, Scaife BKP, Charles SW (1993) Relaxation and resonance in ferrofluids. J Magn Magn Mater 122(1):159–163

    Article  CAS  Google Scholar 

  157. Kötitz R, Fannin PC, Trahms L (1995) Time domain study of Brownian and Néel relaxation in ferrofluids. J Magn Magn Mater 149(1):42–46

    Article  Google Scholar 

  158. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742

    Article  CAS  Google Scholar 

  159. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Cheon J et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733

    Article  CAS  Google Scholar 

  160. Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Cheon J et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391

    Article  CAS  Google Scholar 

  161. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Hyeon T et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441

    Article  CAS  Google Scholar 

  162. Hoffmann B, Houbertz R, Hartmann U (1998) Eddy current microscopy. Appl Phys A Mater Sci Process 66:S409–S413

    Article  CAS  Google Scholar 

  163. Sidles JA, Garbini JL, Bruland KJ, Rugar D, Züger O, Hoen S, Yannoni CS (1995) Magnetic resonance force microscopy. Rev Mod Phys 67(1):249

    Article  CAS  Google Scholar 

  164. Hammel PC, Pelekhov DV, Wigen PE, Gosnell TR, Midzor MM, Roukes ML (2003) The magnetic-resonance force microscope: a new tool for high-resolution, 3-D, subsurface scanned probe imaging. Proc IEEE 91(5):789–798

    Article  Google Scholar 

  165. Suter A (2004) The magnetic resonance force microscope. Prog Nucl Magn Reson Spectrosc 45(3):239–274

    Article  CAS  Google Scholar 

  166. Borgonovi F, Gorshkov VN, Tsifrinovich VII (2006) Magnetic resonance force microscopy and a single-spin measurement. World Scientific, Hackensack

    Google Scholar 

  167. Wigen PE, Roukes ML, Hammel PC (2006) Ferromagnetic resonance force microscopy. In: Spin dynamics in confined magnetic structures III. Springer, Berlin/Heidelberg, pp 105–136

    Chapter  Google Scholar 

  168. Hammel PC, Pelekhov DV (2007) The magnetic force microscope. In: Kronmuller H, Parkin S (eds) Handbook of magnetism and advanced magnetic materials, vol 5, Spintronics and magnetoelectronics. Wiley, Chichester

    Google Scholar 

  169. Kuehn S, Hickman SA, Marohn JA (2008) Advances in mechanical detection of magnetic resonance. J Chem Phys 128:052208

    Article  CAS  Google Scholar 

  170. Zhang Z, Roukes ML, Hammel PC (1996) Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy. J Appl Phys 80(12):6931–6938

    Article  CAS  Google Scholar 

  171. Dougherty WM, Bruland KJ, Chao SH, Garbini JL, Jensen SE, Sidles JA (2000) The Bloch equations in high-gradient magnetic resonance force microscopy: theory and experiment. J Magn Reson 143(1):106–119

    Article  CAS  Google Scholar 

  172. Suter A, Pelekhov DV, Roukes ML, Hammel PC (2002) Probe–sample coupling in the magnetic resonance force microscope. J Magn Reson 154(2):210–227

    Article  CAS  Google Scholar 

  173. Charbois V, Naletov VV, Youssef JB, Klein O (2002) Influence of the magnetic tip in ferromagnetic resonance force microscopy. Appl Phys Lett 80(25):4795–4797

    Article  CAS  Google Scholar 

  174. Mozyrsky D, Martin I, Pelekhov D, Hammel PC (2003) Theory of spin relaxation in magnetic resonance force microscopy. Appl Phys Lett 82(8):1278–1280

    Article  CAS  Google Scholar 

  175. Wago K, Zuger O, Kendrick R, Yannoni CS, Rugar D (1996) Low-temperature magnetic resonance force detection. J Vacuum Sci Technol B Microelectron Nanometer Struct 14(2):1197–1201

    Article  CAS  Google Scholar 

  176. Garbini JL, Bruland KJ, Dougherty WM, Sidles JA (1996) Optimal control of force microscope cantilevers. I. Controller design. J Appl Phys 80(4):1951–1958

    Article  CAS  Google Scholar 

  177. Bruland KJ, Garbini JL, Dougherty WM, Sidles JA (1996) Optimal control of force microscope cantilevers. II. Magnetic coupling implementation. J Appl Phys 80(4):1959–1964

    Article  CAS  Google Scholar 

  178. Zhang Z, Hammel PC, Moore GJ (1996) Application of a novel rf coil design to the magnetic resonance force microscope. Rev Sci Instrum 67(9):3307–3309

    Article  CAS  Google Scholar 

  179. Dougherty WM, Bruland KJ, Garbini JL, Sidles JA (1996) Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator. Meas Sci Technol 7(12):1733

    Article  CAS  Google Scholar 

  180. Zhang Z, Hammel PC (1998) Magnetic resonance force microscopy with a ferromagnetic tip mounted on the force detector. Solid State Nucl Magn Reson 11(1):65–72

    Article  CAS  Google Scholar 

  181. Nazaretski E, Graham KS, Thompson JD, Wright JA, Pelekhov DV, Hammel PC, Movshovich R (2009) Design of a variable temperature scanning force microscope. Rev Sci Instrum 80(8):083704–083704

    Article  CAS  Google Scholar 

  182. Streckeisen P, Rast S, Wattinger C, Meyer E, Vettiger P, Gerber C, Güntherodt HJ (1998) Instrumental aspects of magnetic resonance force microscopy. Appl Phys A Mater Sci Process 66:S341–S344

    Article  CAS  Google Scholar 

  183. Rugar D, Stipe BC, Mamin HJ, Yannoni CS, Stowe TD, Yasumura KY, Kenny TW (2001) Adventures in attonewton force detection. Appl Phys A 72(1):S3–S10

    Article  Google Scholar 

  184. Jenkins NE, DeFlores LP, Allen J, Ng TN, Garner SR, Kuehn S, Marohn JA et al (2004) Batch fabrication and characterization of ultrasensitive cantilevers with submicron magnetic tips. J Vacuum Sci Technol B Microelectron Nanometer Struct 22(3):909–915

    Article  CAS  Google Scholar 

  185. Barbic M, Scherer A (2005) Composite nanowire-based probes for magnetic resonance force microscopy. Nano Lett 5(1):187–190

    Article  CAS  Google Scholar 

  186. Mamin HJ, Rettner CT, Sherwood MH, Gao L, Rugar D (2012) High field-gradient dysprosium tips for magnetic resonance force microscopy. Appl Phys Lett 100(1):013102–013102

    Article  CAS  Google Scholar 

  187. Longenecker JG, Mamin HJ, Senko AW, Chen L, Rettner CT, Rugar D, Marohn JA (2012) High-gradient nanomagnets on cantilevers for sensitive detection of nuclear magnetic resonance. ACS Nano 6(11):9637–9645

    Article  CAS  Google Scholar 

  188. Rugar D, Yannoni CS, Sidles JA (1992) Mechanical detection of magnetic resonance. Nature 360(6404):563–566

    Article  Google Scholar 

  189. Wago K, Zuger O, Wegener J, Kendrick R, Yannoni CS, Rugar D (1997) Magnetic resonance force detection and spectroscopy of electron spins in phosphorus-doped silicon. Rev Sci Instrum 68(4):1823–1826, ESR-Spectr mit Hyperfeinsplitting

    Article  CAS  Google Scholar 

  190. Wago K, Botkin D, Yannoni CS, Rugar D (1998) Force-detected electron-spin resonance: adiabatic inversion, nutation, and spin echo. Phys Rev B 57(2):1108

    Article  CAS  Google Scholar 

  191. Züger O, Rugar D (1993) First images from a magnetic resonance force microscope. Appl Phys Lett 63(18):2496–2498

    Article  Google Scholar 

  192. Züger O, Rugar D (1994) Magnetic resonance detection and imaging using force microscope techniques. J Appl Phys 75(10):6211–6216

    Article  Google Scholar 

  193. Hammel PC, Zhang Z, Moore GJ, Roukes ML (1995) Sub-surface imaging with the magnetic resonance force microscope. J Low Temp Phys 101(1–2):59–69

    Article  CAS  Google Scholar 

  194. Rugar D, Budakian R, Mamin HJ, Chui BW (2004) Single spin detection by magnetic resonance force microscopy. Nature 430(6997):329–332

    Article  CAS  Google Scholar 

  195. Rugar D, Züger O, Hoen S, Yannoni CS, Vieth HM, Kendrick RD (1994) Force detection of nuclear magnetic resonance. Science 264(5165):1560–1563

    Article  CAS  Google Scholar 

  196. Züger O, Hoen ST, Yannoni CS, Rugar D (1996) Three-dimensional imaging with a nuclear magnetic resonance force microscope. J Appl Phys 79(4):1881–1884

    Article  Google Scholar 

  197. Mamin HJ, Poggio M, Degen CL, Rugar D (2007) Nuclear magnetic resonance imaging with 90-nm resolution. Nat Nanotechnol 2(5):301–306

    Article  CAS  Google Scholar 

  198. Eberhardt KW, Degen CL, Hunkeler A, Meier BH (2008) One- and Two-Dimensional NMR spectroscopy with a magnetic-resonance force microscope. Angew Chem Int Ed 47(46):8961–8963

    Article  CAS  Google Scholar 

  199. Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D (2009) Nanoscale magnetic resonance imaging. Proc Natl Acad Sci 106(5):1313–1317

    Article  CAS  Google Scholar 

  200. Mamin HJ, Oosterkamp TH, Poggio M, Degen CL, Rettner CT, Rugar D (2009) Isotope-selective detection and imaging of organic nanolayers. Nano Lett 9(8):3020–3024

    Article  CAS  Google Scholar 

  201. Joss R, Tomka IT, Eberhardt KW, van Beek JD, Meier BH (2011) Chemical-shift imaging in micro-and nano-MRI. Phys Rev B 84(10):104435

    Article  CAS  Google Scholar 

  202. Zhang Z, Hammel PC, Wigen PE (1996) Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy. Appl Phys Lett 68(14):2005–2007

    Article  CAS  Google Scholar 

  203. Zhang Z, Hammel PC, Midzor M, Roukes ML, Childress JR (1998) Ferromagnetic resonance force microscopy on microscopic cobalt single layer films. Appl Phys Lett 73(14):2036–2038

    Article  CAS  Google Scholar 

  204. Wago K, Botkin D, Yannoni CS, Rugar D (1998) Paramagnetic and ferromagnetic resonance imaging with a tip-on-cantilever magnetic resonance force microscope. Appl Phys Lett 72(21):2757–2759

    Article  CAS  Google Scholar 

  205. Mewes T, Kim J, Pelekhov DV, Kakazei GN, Wigen PE, Batra S, Hammel PC (2006) Ferromagnetic resonance force microscopy studies of arrays of micron size permalloy dots. Phys Rev B 74(14):144424

    Article  CAS  Google Scholar 

  206. Urban R, Putilin A, Wigen PE, Liou SH, Cross MC, Hammel PC, Roukes ML (2006) Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy. Phys Rev B 73(21):212410

    Article  CAS  Google Scholar 

  207. Lee I, Obukhov Y, Xiang G, Hauser A, Yang F, Banerjee P, Hammel PC et al (2010) Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature 466(7308):845–848

    Article  CAS  Google Scholar 

  208. Lee I, Obukhov Y, Hauser AJ, Yang FY, Pelekhov DV, Hammel PC (2011) Nanoscale confined mode ferromagnetic resonance imaging of an individual Ni81Fe19 disk using magnetic resonance force microscopy. J Appl Phys 109(7):07D313–07D313

    Article  CAS  Google Scholar 

  209. Pigeau B, Hahn C, De Loubens G, Naletov VV, Klein O, Mitsuzuka K, Montaigne F et al (2012) Measurement of the dynamical dipolar coupling in a pair of magnetic nanodisks using a ferromagnetic resonance force microscope. Phys Rev Lett 109(24):247602

    Article  CAS  Google Scholar 

  210. Mamin HJ, Budakian R, Chui BW, Rugar D (2003) Detection and manipulation of statistical polarization in small spin ensembles. Phys Rev Lett 91(20):207604

    Article  CAS  Google Scholar 

  211. Budakian R, Mamin HJ, Chui BW, Rugar D (2005) Creating order from random fluctuations in small spin ensembles. Science 307(5708):408–411

    Article  CAS  Google Scholar 

  212. Mamin HJ, Budakian R, Chui BW, Rugar D (2005) Magnetic resonance force microscopy of nuclear spins: detection and manipulation of statistical polarization. Phys Rev B 72(2):024413

    Article  CAS  Google Scholar 

  213. Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York 1999

    Google Scholar 

  214. Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719

    Article  CAS  Google Scholar 

  215. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci 89(12):5675–5679

    Article  CAS  Google Scholar 

  216. Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging, vol 1. Sinauer Associates, Sunderland

    Google Scholar 

  217. Ciobanu L, Seeber DA, Pennington CH (2002) 3D MR microscopy with resolution 3.7 μm by 3.3 μm by 3.3 μm. J Magn Reson 158(1):178–182

    Article  CAS  Google Scholar 

  218. Weiger M, Schmidig D, Denoth S, Massin C, Vincent F, Schenkel M, Fey M (2008) NMR microscopy with isotropic resolution of 3.0 μm using dedicated hardware and optimized methods. Conc Magn Reson Part B Magn Reson Eng 33(2):84–93

    Article  CAS  Google Scholar 

  219. Berman GP, Doolen GD, Hammel PC, Tsifrinovich VI (2000) Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy. Phys Rev B 61(21):14694–14699

    Article  CAS  Google Scholar 

  220. Berman GP, Doolen GD, Hammel PC, Tsifrinovich VI (2001) Magnetic resonance force microscopy quantum computer with tellurium donors in silicon. Phys Rev Lett 86(13):2894–2896

    Article  CAS  Google Scholar 

  221. Cerletti V, Coish WA, Gywat O, Loss D (2005) Recipes for spin-based quantum computing. Nanotechnology 16(4):R27

    Article  CAS  Google Scholar 

  222. Bruland KJ, Dougherty WM, Garbini JL, Sidles JA, Chao SH (1998) Force-detected magnetic resonance in a field gradient of 250 000 Tesla per meter. Appl Phys Lett 73(21):3159–3161

    Article  CAS  Google Scholar 

  223. Mamin HJ, Budakian R, Rugar D (2003) Superconducting microwave resonator for millikelvin magnetic resonance force microscopy. Rev Sci Instrum 74(5):2749–2753

    Article  CAS  Google Scholar 

  224. Poggio M, Degen CL, Rettner CT, Mamin HJ, Rugar D (2007) Nuclear magnetic resonance force microscopy with a microwire rf source. Appl Phys Lett 90(26):263111–263111

    Article  CAS  Google Scholar 

  225. Ascoli C, Baschieri P, Frediani C, Lenci L, Martinelli M, Alzetta G, Pardi L et al (1996) Micromechanical detection of magnetic resonance by angular momentum absorption. Appl Phys Lett 69(25):3920–3922

    Article  CAS  Google Scholar 

  226. Löhndorf M, Moreland J, Kabos P (2000) Ferromagnetic resonance detection with a torsion-mode atomic-force microscope. Appl Phys Lett 76(9):1176–1178

    Article  Google Scholar 

  227. Wilson KG (1975) Renormalization group methods. Adv Math 16(2):170–186

    Article  Google Scholar 

  228. Wilson KG (1975) The renormalization group: critical phenomena and the Kondo problem. Rev Mod Phys 47(4):773

    Article  Google Scholar 

  229. Wiesendanger R (2009) Spin mapping at the nanoscale and atomic scale. Rev Mod Phys 81(4):1495

    Article  CAS  Google Scholar 

  230. Kaiser U, Schwarz A, Wiesendanger R (2008) Evaluating local properties of magnetic tips utilizing an antiferromagnetic surface. Phys Rev B 78(10):104418

    Article  CAS  Google Scholar 

  231. Lazo C, Caciuc V, Hölscher H, Heinze S (2008) Role of tip size, orientation, and structural relaxations in first-principles studies of magnetic exchange force microscopy and spin-polarized scanning tunneling microscopy. Phys Rev B 78(21):214416

    Article  CAS  Google Scholar 

  232. Lazo C, Heinze S (2011) First-principles study of magnetic exchange force microscopy with ferromagnetic and antiferromagnetic tips. Phys Rev B 84(14):144428

    Article  CAS  Google Scholar 

  233. Schwarz A, Kaiser U, Wiesendanger R (2009) Towards an understanding of the atomic scale magnetic contrast formation in NC-AFM: a tip material dependent MExFM study on NiO (001). Nanotechnology 20(26):264017

    Article  CAS  Google Scholar 

  234. Vedmedenko EY, Zhu Q, Kaiser U, Schwarz A, Wiesendanger R (2012) Atomic-scale magnetic dissipation from spin-dependent adhesion hysteresis. Phys Rev B 85(17):174410

    Article  CAS  Google Scholar 

  235. Pielmeier F, Giessibl FJ (2013) Spin resolution and evidence for superexchange on NiO (001) observed by force microscopy. Phys Rev Lett 110(26):266101

    Article  CAS  Google Scholar 

  236. Schmidt R, Lazo C, Holscher H, Pi UH, Caciuc V, Schwarz A, Wiesendanger R, Heinze S (2008) Probing the magnetic exchange forces of iron on the atomic scale. Nano Lett 9(1):200–204

    Article  CAS  Google Scholar 

  237. Schmidt R, Lazo C, Kaiser U, Schwarz A, Heinze S, Wiesendanger R (2011) Quantitative measurement of the magnetic exchange interaction across a vacuum gap. Phys Rev Lett 106(25):257202

    Article  CAS  Google Scholar 

  238. Schmidt R, Schwarz A, Wiesendanger R (2012) Magnetization switching utilizing the magnetic exchange interaction. Phys Rev B 86(17):174402

    Article  CAS  Google Scholar 

  239. Ness H, Gautier F (1995) Theoretical study of the interaction between a magnetic nanotip and a magnetic surface. Phys Rev B 52(10):7352

    Article  CAS  Google Scholar 

  240. Nakamura K, Hasegawa H, Oguchi T, Sueoka K, Hayakawa K, Mukasa K (1997) First-principles calculation of the exchange interaction and the exchange force between magnetic Fe films. Phys Rev B 56(6):3218

    Article  CAS  Google Scholar 

  241. Foster AS, Shluger AL (2001) Spin-contrast in non-contact SFM on oxide surfaces: theoretical modelling of NiO (001) surface. Surf Sci 490(1):211–219

    Article  CAS  Google Scholar 

  242. Hölscher H, Langkat SM, Schwarz A, Wiesendanger R (2002) Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl Phys Lett 81:4428–4430

    Article  CAS  Google Scholar 

  243. Hoffmann R, Lantz MA, Hug HJ, Van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Güntherodt HJ (2003) Atomic resolution imaging and frequency versus distance measurements on NiO (001) using low-temperature scanning force microscopy. Phys Rev B 67(8):085402

    Article  CAS  Google Scholar 

  244. Langkat SM, Hölscher H, Schwarz A, Wiesendanger R (2003) Determination of site specific interatomic forces between an iron coated tip and the NiO (001) surface by force field spectroscopy. Surf Sci 527(1):12–20

    Article  CAS  Google Scholar 

  245. Schwabl F (2005) Advanced quantum mechanics. Springer, Berlin/Heidelberg

    Google Scholar 

  246. Wieser R, Caciuc V, Lazo C, Hölscher H, Vedmedenko EY, Wiesendanger R (2013) A theoretical study of the dynamical switching of a single spin by exchange forces. New J Phys 15(1):013011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Block, S. (2015). Imaging and Characterization of Magnetic Micro- and Nanostructures Using Force Microscopy. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_13

Download citation

Publish with us

Policies and ethics