Skip to main content

Band Bending at Metal-Semiconductor Interfaces, Ferroelectric Surfaces and Metal-Ferroelectric Interfaces Investigated by Photoelectron Spectroscopy

  • Chapter

Abstract

X-ray photoelectron spectroscopy is nowadays a well-established technique for the determination of chemical compounds with surface sensitivity. To the atomic and chemical specificity and surface sensitivity, recently a new functionality was added to this technique, the ability to identify energy band bendings near surfaces and interfaces. Two standard cases are represented by Schottky metal–semiconductor structures and by ferroelectric surfaces exhibiting out-of-plane polarization. The case of metal–ferroelectric interfaces is more difficult to assess, but elements of a suitable theory start to be sketched nowadays and in short time a consistent model is expected to emerge. This chapter analyzes the recent progresses in the derivation of band bendings at surfaces and interfaces by X-ray photoelectron spectroscopy. A critical review of the literature will be presented, together with basic aspects of the theory of band bending. The experimental section will review some quite recent results, going from “standard” cases of Schottky contacts to usual semiconductors and to free ferroelectric surfaces, analyzing also the preferential adsorption of dipole molecules on some ferroelectrics, and ending with metal–ferroelectric cases, where sometimes unexpected phenomena occur, connected to a competition between Schottky barrier formation and loss of ferroelectric out-of-plane polarization by the grounding of the surface due to the deposited metal layer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sze SM (1981) Physics of semiconductor devices. Wiley, Hoboken

    Google Scholar 

  2. Cowley AM, Sze SM (1965) Surface states and barrier height of metal–semiconductor systems. J Appl Phys 36(10):3212–3220

    Article  CAS  Google Scholar 

  3. Waldrop JR, Grant RW (1996) Measurement of AlN/GaN(0001) heterojunction band offsets by x-ray photoemission spectroscopy. Appl Phys Lett 68(20):2879–2881

    Article  CAS  Google Scholar 

  4. Sezen H, Suzer S (2013) XPS for chemical- and charge-sensitive analyses. Thin Solid Films 534:1–11

    Article  CAS  Google Scholar 

  5. Duan TL, Pan JS, Ang DS (2013) Interfacial chemistry and valence band offset between GaN and Al2O3 studied by X-ray photoelectron spectroscopy. Appl Phys Lett 102(20):201604:1–201604:4

    Article  CAS  Google Scholar 

  6. Kakushima K, Okamoto K, Tachi K, Song J et al (2008) Observation of band bending of metal/high-k Si capacitor with high energy x-ray photoemission spectroscopy and its application to interface dipole measurement. J Appl Phys 104(10):104908:1–104908:5

    Article  CAS  Google Scholar 

  7. Akazawa M, Gao B, Hashizume T, Hiroki M et al (2011) Measurement of valence-band offsets of InAlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. J Appl Phys 109(1):013703:1–013703:8

    Article  CAS  Google Scholar 

  8. Chiam SY, Liu ZQ, Pan JS, Manippady KK et al (2012) Effects of electric field in band alignment measurements using photoelectron spectroscopy. Surf Interface Anal 44(8):1091–1095

    Article  CAS  Google Scholar 

  9. Scott JF (2000) Ferroelectric memories. Springer, Berlin

    Book  Google Scholar 

  10. Hüfner S (2003) Photoelectron spectroscopy: principles and applications. Springer, Berlin

    Book  Google Scholar 

  11. NIST XPS database. http://srdata.nist.gov/xps

  12. Crist BV (2004) Handbook of monochromatic XPS spectra. The elements and native oxides, vol 1. Commercially pure binary oxides, vol 2. XPS International, Mountain View

    Google Scholar 

  13. Ibach H (1977) Electron spectroscopy for surface analysis. Springer, Berlin

    Book  Google Scholar 

  14. Apostol NG, Stoflea LE, Lungu GA, Chirila C et al (2013) Charge transfer and band bending at Au/Pb(Zr, Ti)O3 interfaces investigated by photoelectron spectroscopy. Appl Surf Sci 273:415–425

    Article  CAS  Google Scholar 

  15. Wagner CD, Davis LE, Zeller MV, Taylor JA et al (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal 3(5):211–225

    Article  CAS  Google Scholar 

  16. Chen F, Klein A (2012) Polarization dependence of Schottky barrier heights at interfaces of ferroelectrics determined by photoelectron spectroscopy. Phys Rev B 86(9):094105:1–094105:7

    Article  CAS  Google Scholar 

  17. Pancotti A, Wang J, Chen P, Tortech L et al (2013) X-ray photoelectron diffraction study of relaxation and rumpling of ferroelectric domains in BaTiO3(001). Phys Rev B 87(18):184116:1–184116:10

    Article  CAS  Google Scholar 

  18. Teodorescu CM, Esteva JM, Karnatak RC, El Afif A (1994) An approximation of the voigt I profile for the fitting of experimental X-ray absorption data. Nucl Instrum Methods Phys Res, Sect A 345(1):141–147

    Article  CAS  Google Scholar 

  19. Mardare D, Luca D, Teodorescu CM, Macovei D (2007) On the hydrophilicity of nitrogen- doped TiO2 thin films. Surf Sci 601(18):4515–4520

    Article  CAS  Google Scholar 

  20. Luca D, Teodorescu CM, Apetrei R, Macovei D et al (2007) Preparation and characterization of increased-efficiency photocatalytic TiO2–2xNx thin films. Thin Solid Films 515(24):8605–8610

    Article  CAS  Google Scholar 

  21. Apostol NG, Stoflea LE, Lungu GA, Tanase LC et al (2013) Band bending in Au/Pb(Zr, Ti)O3 investigated by X-ray photoelectron spectroscopy: dependence on the initial state of the film. Thin Solid Films 545:13–21

    Article  CAS  Google Scholar 

  22. Schlaf R, Parkinson BA, Lee PA, Nebesny KW et al (1998) Photoemission spectroscopy of LiF coated Al and Pt electrodes. J Appl Phys 84(12):6729–6736

    Article  CAS  Google Scholar 

  23. Schlaf R, Schroeder PG, Nelson MW, Parkinson BA et al (1999) Observation of strong band bending in perylene tetracarboxylic dianhydride thin films grown on SnS2. J Appl Phys 86(3):1499–1509

    Article  CAS  Google Scholar 

  24. Schlaf R, Merritt CD, Crisafulli LA, Kafafi ZH (1999) Organic semiconductor interfaces: discrimination between charging and band bending related shifts in frontier orbital line-up measurements with photoemission spectroscopy. J Appl Phys 86(10):5678–5686

    Article  CAS  Google Scholar 

  25. Bierwagen O, Speck JS, Negata T, Chikyow T et al (2011) Depletion of the In2O3(001) and (111) surface electron accumulation by an oxygen plasma surface treatment. Appl Phys Lett 98(17):172101:1–172101:3

    Article  CAS  Google Scholar 

  26. Gheorghe NG, Lungu GA, Costescu RM, Popescu DG et al (2011) Enhanced contamination of Si(001) when analyzed with AES with respect to XPS. Optoelectron Adv Mater-Rapid Commun 5(5–6):499–504

    CAS  Google Scholar 

  27. Gheorghe NG, Lungu GA, Costescu RM, Teodorescu CM (2011) Significantly different contamination of atomically clean Si(001) when investigated by XPS and AES. Phys Status Solidi (b) – Basic Solid State Phys 248(8):1919–1924

    Article  CAS  Google Scholar 

  28. Hirose K (2010) XPS time-dependent measurement of SiO2/Si and HfAlOx/Si interfaces. J Electron Spectrosc Relat Phenomena 176(1–3):46–51

    Article  CAS  Google Scholar 

  29. Bersch E, Di M, Consiglio S, Clark RD et al (2010) Complete band offset characterization of the HfO2/SiO2/Si stack using charge corrected X-ray photoelectron spectroscopy. J Appl Phys 107(4):043702:1–043702:13

    Article  CAS  Google Scholar 

  30. Dragoi C, Gheorghe NG, Lungu GA, Trupina L et al (2012) X-ray photoelectron spectroscopy of pulsed laser deposited Pb(Zr, Ti)O3−δ. Physica Status Solidi (a) – Appl Mater Sci 209(6):1049–1052

    Article  CAS  Google Scholar 

  31. Galca AC, Stancu V, Husanu MA, Dragoi C et al (2011) Substrate-target distance dependence of structural and optical properties in case of Pb(Zr, Ti)O3 films obtained by pulsed laser deposition. Appl Surf Sci 257(14):5938–5943

    Article  CAS  Google Scholar 

  32. Apostol NG (2013) Surfaces of elemental and oxide semiconductors and interfaces of them with metals deposited by molecular beam epitaxy. PhD thesis, “I.G. Murgulescu” Institute of Chemical Physics Bucharest (in Romanian; unpublished)

    Google Scholar 

  33. Stoflea LE, Apostol NG, Chirila C, Trupina L et al (2013) Schottky barrier versus surface ferroelectric depolarization at Cu/Pb(Zr,Ti)O3 interfaces. J Mater Sci (resubmitted with minor revisions)

    Google Scholar 

  34. Chen F, Schafranek R, Wu WB, Klein A (2009) Formation and modification of Schottky barriers at the PZT/Pt interface. J Phys D Appl Phys 42(21):215302:1–215302:5

    Google Scholar 

  35. Chen F, Schafranek R, Wu WB, Klein A (2011) Reduction-induced Fermi level pinning at the interfaces between Pb(Zr, Ti)O3 and Pt, Cu and Ag metal electrodes. J Phys D Appl Phys 44(25):255301:1–255301:7

    Article  CAS  Google Scholar 

  36. Li SY, Ghinea C, Bayer TJM, Motzko M et al (2011) Electrical properties of (Ba, Sr)TiO3 thin films with Pt and ITO electrodes: dielectric and rectifying behaviour. J Phys Condens Matter 23(33):334202:1–334202:9

    Article  CAS  Google Scholar 

  37. Chen F, Schafranek R, Li S, Wu WB et al (2010) Energy band alignment between Pb(Zr,Ti)O3 and high and low work function conducting oxides-from hole to electron injection. J Phys D Appl Phys 43(29):295301:1–295301:6

    Article  CAS  Google Scholar 

  38. Schafranek R, Li SY, Chen F, Wu WB et al (2011) PbTiO3/SrTiO3 interface: energy band alignment and its relation to the limits of Fermi level variation. Phys Rev B 84(4):045317:1–045317:7

    Article  CAS  Google Scholar 

  39. Vickerman JC, Gilmore IS (eds) (2000) Surface analysis, the principal techniques, 2nd edn. Wiley, Chichester

    Google Scholar 

  40. Avila J, Mascaraque A, Teodorescu C, Michel EG, Asensio MC (1997) Fe/Si (111) interface formation studied by photoelectron diffraction. Surf Sci 377–379:856–860

    Article  Google Scholar 

  41. Mascaraque A, Avila J, Teodorescu CM, Asensio MC, Michel EG (1997) Atomic structure of the reactive Fe /Si (111) 7 × 7 interface. Phys Rev B 55(12):R7315–R7318

    Article  CAS  Google Scholar 

  42. Teodorescu CM, Chrost J, Ascolani H, Avila J et al (1998) Growth of epitaxial Co layers on Sb-passivated GaAs(110) substrates. Surface Rev Lett 5(1):279–283

    Article  CAS  Google Scholar 

  43. Teodorescu CM, Martin MG, Franco N, Ascolani H et al (1999) Epitaxial growth of bcc Co films on Sb-passivated GaAs(110) substrates. J Electron Spectrosc Relat Phenomena 101–103:493–499

    Article  Google Scholar 

  44. Izquierdo M, Dávila ME, Avila J, Ascolani H et al (2005) Epitaxy and magnetic properties of surfactant-mediated growth of bcc cobalt. Phys Rev Lett 94(18):187601(1–4)

    Article  CAS  Google Scholar 

  45. Pintilie L, Dragoi C, Pintilie I (2011) Interface controlled photovoltaic effect in epitaxial Pb(Zr, Ti)O3 films with tetragonal structure. J Appl Phys 110(4):044105:1–044105:6

    Article  CAS  Google Scholar 

  46. Pintilie L, Boerasu I, Gomes MJM, Zhao T et al (2005) Metal-ferroelectric-metal structures with Schottky contacts. II. Analysis of the experimental current–voltage and capacitance-voltage characteristics of Pb(Zr,Ti)O3 thin films. J Appl Phys 98(12):124104:1–124104:9

    Google Scholar 

  47. Apostol NG, Stoflea LE, Lungu GA, Tache CA et al (2013) Band bending at free Pb(Zr, Ti)O3 surfaces analyzed by X-ray photoelectron spectroscopy. Mater Sci Eng B – Adv Funct Solid-State Mater 178:1317–1322

    Article  CAS  Google Scholar 

  48. Hudson LT, Kurtz RL, Robey SW, Temple D et al (1993) Surface core-level shifts of barium observed in photoemission of vacuum-fractured BaTiO3(100). Phys Rev B 47(16):10832–10838

    Article  CAS  Google Scholar 

  49. Woll J, Allinger T, Polyakov V, Schaefer JA et al (1994) Electronic effects of surface in atoms at clean and hydrogenated InP(100) 4 × 2 surfaces. Surf Sci 315(3):293–301

    Article  CAS  Google Scholar 

  50. Lau WM, Huang LJ, Bello I, Yiu YM et al (1994) Modification of surface band bending of diamond by low-energy argon and carbon ion-bombardment. J Appl Phys 75(7):3385–3391

    Article  CAS  Google Scholar 

  51. Diederich L, Kuttel OM, Ruffieux P, Pillo T et al (1998) Photoelectron emission from nitrogen- and boron-doped diamond (100) surfaces. Surf Sci 417(1):41–52

    Article  CAS  Google Scholar 

  52. Diederich L, Kuttel O, Aebi P, Schlapbach L (1998) Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy. Surf Sci 418(1):219–239

    Article  CAS  Google Scholar 

  53. Yu HY, Feng XD, Grozea D, Lu ZH et al (2001) Surface electronic structure of plasma-treated indium tin oxides. Appl Phys Lett 78(17):2595–2597

    Article  CAS  Google Scholar 

  54. Kobayashi H, Sakurai T, Takahashi M, Nishioka Y et al (2003) Interface states at SiO2/6H- SiC(0001) interfaces observed by x-ray photoelectron spectroscopy measurements under bias: comparison between dry and wet oxidation. Phys Rev B 67(11):115305:1–115305:8

    Article  CAS  Google Scholar 

  55. Wang XL, Han K, Wang WW, Xiang JJ et al (2012) Band alignment of HfO2 on SiO2/Si structure. Appl Phys Lett 100(12):122907:1–122907:4

    Google Scholar 

  56. Kakushima K, Okamoto K, Adachi M, Tachi K et al (2008) Band bending measurement of HfO2/SiO2/Si capacitor with ultra-thin La2O3 insertion by XPS. Appl Surf Sci 254(19):6106–6108

    Article  CAS  Google Scholar 

  57. Sezen H, Suzer S (2011) Communication: enhancement of dopant dependent x-ray photoelectron spectroscopy peak shifts of Si by surface photovoltage. J Chem Phys 135(14):141102:1–141102:4

    Article  CAS  Google Scholar 

  58. Copuroglu M, Sezen H, Opila RL, Suzer S (2013) Band-bending at buried SiO2/Si interface as probed by XPS. ACS Appl Mater Interfaces 5(12):5875–5881

    Article  CAS  Google Scholar 

  59. Gallet JJ, Bournel F, Rochet F, Köhler U et al (2011) Isolated Silicon dangling bonds on a water-saturated n + −doped Si(001)-2 × 1 surface: an XPS and STM study. J Phys Chem C 115(15):7686–7693

    Article  CAS  Google Scholar 

  60. Oh JH, Kim KK, Hong HG, Byeon KJ et al (2010) Electrical characteristics of In/ITO p-type ohmic contacts for high-performance GaN-based light-emitting diodes. Mater Sci Semiconduct Process 13(4):272–275

    Article  CAS  Google Scholar 

  61. Lorenz P, Haensel T, Gutt R, Koch RJ, Schaefer JA, Krischok S (2010) Analysis of polar GaN surfaces with photoelectron and high resolution electron energy loss spectroscopy. Phys Status Solidi B 247(7):1658–1661

    Article  CAS  Google Scholar 

  62. Eisenhardt A, Reiss S, Himmerlich M, Schaefer JA et al (2010) Changes in the valence band structure of as-grown InN(0001)-2 × 2 surfaces upon exposure to oxygen and water. Phys Status Solidi (a) – Appl Mater Sci 207(5):1037–1040

    Article  CAS  Google Scholar 

  63. Eisenhardt A, Himmerlich M, Krischok S (2012) Characterization of as-grown and adsorbate-covered N-polar InN surfaces using in situ photoelectron spectroscopy. Phys Status Solidi (a) – Appl Mater Sci 209(1):45–49

    Article  CAS  Google Scholar 

  64. Xu XQ, Liu XL, Guo Y, Wang J et al (2010) Influence of band bending and polarization on the valence band offset measured by x-ray photoelectron spectroscopy. J Appl Phys 107(10):104510:1–104510:6

    Article  CAS  Google Scholar 

  65. Nagata T, Koblmuller G, Bierwagen O, Gallinat CS, Speck JS (2009) Surface structure and chemical states of a-plane and c-plane InN films. Appl Phys Lett 95(13):132104:1–132104:3

    Article  CAS  Google Scholar 

  66. Kim KT, Lee K, Oh MS, Park CH et al (2009) Surface-induced time-dependent instability of ZnO based thin-film transistors. Thin Solid Films 517(23):6345–6348

    Article  CAS  Google Scholar 

  67. Hamsen C, Lorenz P, Schaefer JA, Krischok S et al (2010) Analysis of the band offsets between ultrathin GaN(0001) layers and sapphire (0001) by photoelectron spectroscopy. Phys Status Solidi (c) – Curr Top Solid State Phys 7(2):268–271

    Article  CAS  Google Scholar 

  68. Uhlrich JJ, Franking R, Hamers RJ, Kuech TF et al (2009) Sulfide treatment of ZnO single crystals and nanorods and the effect on P3HT-ZnO photovoltaic device properties. J Phys Chem C 113(50):21147–21154

    Article  CAS  Google Scholar 

  69. Lide DL (ed) (1995) CRC Handbook of chemistry and physics, 75th edn. CRC Press, Boca Raton

    Google Scholar 

  70. Kim T, Yoshitake M, Yagyu S, Nemsak S et al (2010) XPS study on band alignment at Pt-O- terminated ZnO(000_1) interface. Surf Interface Anal 42(10–11):1528–1531

    Article  CAS  Google Scholar 

  71. Blumentrit P, Yoshitake M, Nemsak S, Kim T et al (2011) XPS and UPS study on band alignment atPt-Zn-terminated ZnO(0001) interface. Appl Surf Sci 258(2):780–785

    Article  CAS  Google Scholar 

  72. Ericsson LKE, Zhang HM, Magnusson KO (2013) Photoemission study of ZnO nanocrystals: thermal annealing in UHV and induced band bending. Surf Sci 612:10–15

    Article  CAS  Google Scholar 

  73. Maffeis TGG, Penny MW, Castaing A, Guy OJ et al (2012) XPS investigation of vacuum annealed vertically aligned ultralong ZnO nanowires. Surf Sci 606(1–2):99–103

    Article  CAS  Google Scholar 

  74. Herranz T, Deng XY, Cabot A, Liu Z et al (2011) In situ XPS study of the adsorption and reactions of NO and O2 on gold nanoparticles deposited on TiO2 and SiO2. J Catal 283(2):119–123

    Article  CAS  Google Scholar 

  75. Chung YL, Lai PY, Chen YC, Chen JS (2011) Schottky barrier mediated single-polarity resistive switching in Pt layer-included TiOx memory device. ACS Appl Mater Interfaces 3(6):1918–1924

    Article  CAS  Google Scholar 

  76. Huang L, Peng F, Ohuchi FS (2009) “In situ” XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf Sci 603(17):2825–2834

    Article  CAS  Google Scholar 

  77. Nagata T, Bierwagen O, White ME, Tsai MY et al (2010) Study of the Au Schottky contact formation on oxygen plasma treated n-type SnO2 (101) thin films. J Appl Phys 107(3):033707:1–033707:7

    Article  CAS  Google Scholar 

  78. Kono S, Saito T, Kang SH, Jung WY et al (2010) Band diagram for chemical vapor deposition diamond surface conductive layer: presence of downward band bending due to shallow acceptors. Surf Sci 604(13–14):1148–1165

    Article  CAS  Google Scholar 

  79. Cho SW, Yi Y, Chung KB, Kang SJ et al (2010) The interfacial electronic structure of fullerene/ultra thin dielectrics of SiO2 and SiON. Chem Phys Lett 499(1–3):136–140

    Article  CAS  Google Scholar 

  80. Manandhar K, Parkinson BA (2012) Photoemission study of the morphology and barrier heights at the interface between Benz[a]anthracene and noble metal (111) surfaces. J Phys Chem C 116(36):19379–19384

    Article  CAS  Google Scholar 

  81. Schoell SJ, Sachsenhauser M, Oliveros A, Howgate J et al (2013) Organic functionalization of 3C-SiC surfaces. ACS Appl Mater Interfaces 5(4):1393–1399

    Article  CAS  Google Scholar 

  82. Aguirre-Tostado FS, Milojevic M, Choi KJ, Kim HC et al (2008) S passivation of GaAs and band bending reduction upon atomic layer deposition of HfO2/Al2O3 nanolaminates. Appl Phys Lett 93(6):061907:1–061907:3

    Article  CAS  Google Scholar 

  83. Maffeis TGG, Yung D, LePennec L, Penny MW et al (2007) STM and XPS characterisation of vacuum annealed nanocrystalline WO3 films. Surf Sci 601(21):4953–4957

    Article  CAS  Google Scholar 

  84. Greiner MT, Festin M, Kruse P (2008) Investigation of corrosion-inhibiting aniline oligomer thin films on iron using photoelectron spectroscopy. J Phys Chem 112(48):18991–19004

    CAS  Google Scholar 

  85. Gheorghe NG, Husanu MA, Lungu GA, Costescu RM et al (2010) Atomic structure and reactivity of ferromagnetic Fe deposited on Si(001). J Mater Sci 47:1614–1620

    Article  CAS  Google Scholar 

  86. Gheorghe NG, Husanu MA, Lungu GA, Costescu RM et al (2012) Reactivity, magnetism and local atomic structure in ferromagnetic Fe layers deposited on Si(001). Dig J Nanomater Biostruct 7(1):373–384

    Google Scholar 

  87. Teodorescu CM, Luca D (2006) Comparative study of magnetism and interface composition in Fe/GaAs(100) and Fe/InAs(100). Surf Sci 600(18):4200–4204

    Article  CAS  Google Scholar 

  88. Teodorescu CM, Chevrier F, Richter C, Ilakovac V et al (2000) Structure of Fe layers grown on InAs(100). Appl Surf Sci 166(1–4):137–142

    Article  CAS  Google Scholar 

  89. Teodorescu CM, Chevrier F, Brochier R, Richter C et al (2001) X-ray magnetic circular dichroism, photoemission and RHEED studies of Fe/InAs(100) interfaces. Surf Sci 482–485:1004–1009

    Article  Google Scholar 

  90. Teodorescu CM, Chevrier F, Brochier R, Richter C et al (2002) Reactivity and magnetism of Fe/InAs(100) interfaces. Eur Phys J B 28(3):305–313

    Article  CAS  Google Scholar 

  91. Popescu DG, Husanu MA (2013) Au–Ge bonding on a uniformly Au-covered Ge(001) surface. Phys Status Solidi RRL 7(4):274–277

    Article  CAS  Google Scholar 

  92. Popescu DG, Husanu MA (2014) Epitaxial growth of Au on Ge(001) surface: photoelectron spectroscopy measurements and first-principles calculations. Thin Solid Films. doi:10.1016/j.tsf.2013.12.049

    Google Scholar 

  93. Rabe KM, Dawber M, Lichtensteiger C, Ahn CH et al (2007) Modern physics of ferroelectrics: essential background. In: Rabe KM, Ahn CH, Triscone JM (eds) Physics of ferroelectrics: a modern perspective. Topics in applied physics, vol 105. Springer, Berlin, pp 1–30

    Chapter  Google Scholar 

  94. Kurasawa M, McIntyre PC (2005) Surface passivation and electronic structure characterization of PbTiO3 thin films and Pt/PbTiO3 interfaces. J Appl Phys 97(10):104110:1–104110:9

    Article  CAS  Google Scholar 

  95. Chen Y, McIntyre PC (2007) Lead zirconate titanate ferroelectric thin film capacitors: effects of surface treatments on ferroelectric properties. Appl Phys Lett 91(7):072910:1–072910:3

    Google Scholar 

  96. Pintilie L, Stancu V, Trupina L, Pintilie I (2010) Ferroelectric schottky diode behavior from a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta structure. Phys Rev B 82(8):085319:1–085319:8

    Article  CAS  Google Scholar 

  97. Jia CL, Mi SB, Urban K, Vrejoiu I et al (2008) Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat Mater 7(1):57–61

    Article  CAS  Google Scholar 

  98. Jia CL, Nagarajan V, He JQ, Houben L et al (2007) Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat Mater 6(1):64–69

    Article  CAS  Google Scholar 

  99. Li CR, Cui SF, Liu BT, Zhu AJ et al (1998) Dependence of lattice constant on layer thickness of Pb(Zr0.52Ti0.48)O3 thin films. J Mater Sci Lett 17(15):1263–1266

    Article  CAS  Google Scholar 

  100. Zubko P, Jung DJ, Scott JF (2006) Space charge effects in ferroelectric thin films. J Appl Phys 100:114112:1–114112:10

    Google Scholar 

  101. Pintilie L, Alexe M (2005) Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties. J Appl Phys 98(12):124103:1–124103:8

    Google Scholar 

  102. Vrejoiu I, Alexe M, Hesse D, Gösele U (2008) Functional Perovskites – from epitaxial films to nanostructured arrays. Adv Funct Mater 18(24):3892–3906

    Article  CAS  Google Scholar 

  103. Robertson J, Chen CW (1999) Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate. Appl Phys Lett 74(8):1168–1170

    Article  CAS  Google Scholar 

  104. Huang BC, Chen YT, Chiu YP, Huang YC et al (2012) Direct observation of ferroelectric polarization-modulated band bending at oxide interfaces. Appl Phys Lett 100(12):122903:1–122903:4

    Google Scholar 

  105. Krug I, Barrett N, Petraru A, Locatelli A et al (2010) Extrinsic screening of ferroelectric domains in Pb(Zr0.48Ti0.52)O3. Appl Phys Lett 97(22):222903:1–222903:3

    Article  CAS  Google Scholar 

  106. Simmons JC (1967) Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems. Phys Rev 155(3):657–660

    Article  CAS  Google Scholar 

  107. Chai FK, Brews JR, Schrimpf RD, Birnie DP III (1995) Limitations of the uniform effective field approximation due to doping of ferroelectric thin-film capacitors. J Appl Phys 78(7):4766–4775

    Article  CAS  Google Scholar 

  108. Matsuura H (2000) Calculation of band bending in ferroelectric semiconductor. New J Phys 2:8.1–8.11

    Article  Google Scholar 

  109. Zhang HM, Hirvonen Grytzelius J, Johansson LSO (2013) Thin Mn germanide films studied by XPS, STM, and XMCD. Phys Rev B 88(4):045311:1–045311:7

    Article  CAS  Google Scholar 

  110. Arenholz E, van der Laan G, Fraile-Rodríguez A, Yu P et al (2010) Probing ferroelectricity in PbZr0.2Ti0.8O3 with polarized soft x rays. Phys Rev B 82(14):140103:1–140103:4

    Article  CAS  Google Scholar 

  111. Takatani S, Miki H, Kushida-Abdelghafar K, Torii K (1999) Pt/PbZrxTi1-xO3 interfacial reaction and Schottky barrier formation studied by x-ray photoelectron spectroscopy: effect of H2 and O2 annealing. J Appl Phys 85(11):7784–7791

    Article  CAS  Google Scholar 

  112. Zhu TJ, Lu L (2004) X-ray diffraction and photoelectron spectroscopic studies of (001)- oriented Pb(Zr0.52Ti0.48)O3 thin films prepared by laser ablation. J Appl Phys 95(1):241–247

    Article  CAS  Google Scholar 

  113. Hsieh TC, Shapiro AP, Chiang T-C (1985) Core-level shifts for Au epitaxial overlayers on Ag. Phys Rev B 31(4):2541–2544

    Article  CAS  Google Scholar 

  114. Svanqvist M, Hansen K (2010) Non-jellium scaling of metal cluster ionization energies and electron affinities. Eur Phys J D 56(2):199–203

    Article  CAS  Google Scholar 

  115. Ştoflea LE, Apostol NG, Trupină L, Teodorescu CM (2014) Selective adsorption of contaminants on Pb(Zr,Ti)O3 surfaces shown by X-ray photoelectron spectroscopy. Journal of Materials Chemistry A 2:14386–14392

    Google Scholar 

  116. Yun Y, Kampschulte L, Li M, Liao D, Altman EI (2007) Effect of ferroelectric poling on the adsorption of 2-Propanol on LiNbO3(0001). J Phys Chem C 111:13951–13956

    Article  CAS  Google Scholar 

  117. Yun Y, Altman EI (2007) Using ferroelectric poling to change adsorption on oxide surfaces. J Am Chem Soc 129:15684–15689

    Article  CAS  Google Scholar 

  118. Zhao MH, Bonnell DA, Vohs JM (2009) Influence of ferroelectric polarization on the energetics of the reaction of 2-fluoroethanol on BaTiO3. Surf Sci 603:284–290

    Article  CAS  Google Scholar 

  119. Garra J, Vohs JM, Bonnell DA (2009) The effect of ferroelectric polarization on the interaction of water and methanol with the surface of LiNbO3(0001). Surf Sci 603:1106–1114

    Article  CAS  Google Scholar 

  120. Bellaiche L, Garcia A, Vanderbilt D (2000) Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys Rev Lett 84(23):5427–5430

    Article  CAS  Google Scholar 

  121. Stengel M, Vanderbilt D (2009) Berry-phase theory of polar discontinuities at oxide-oxide interfaces. Phys Rev B 80(24):241103:1–241103:4

    Article  CAS  Google Scholar 

  122. Pintilie I, Teodorescu CM, Ghica C, Chirila C et al (2014) Polarization-control of the potential barrier at the electrode interfaces in epitaxial ferroelectric thin films, ACS Advanced Materials and Interfaces 6:2929–2939

    Google Scholar 

Download references

Acknowledgements

This work was supported by the RO-FR contract “chemical switching of surface ferroelectric topology” (CHEM-SWITCH), which started in 2013. Discussions with Lucian Pintilie are gratefully acknowledged. We acknowledge also contributions from Laura Stoflea, who participated in the XPS data acquisition and analysis on ferroelectrics; Cristina Chirila with the ferroelectrics sample preparation; Lucian Trupina with the PFM analysis; George A. Lungu, Liviu C. Tanase, and Cristina I. Bucur who participated in the Cu/Ge(001) experiment; and Raluca Negrea and Corneliu Ghica for the high-resolution transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian-Mihail Teodorescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Apostol, N.G., Teodorescu, CM. (2015). Band Bending at Metal-Semiconductor Interfaces, Ferroelectric Surfaces and Metal-Ferroelectric Interfaces Investigated by Photoelectron Spectroscopy. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_11

Download citation

Publish with us

Policies and ethics