Skip to main content

Exploration into the Valence Band Structures of Organic Semiconductors by Angle-Resolved Photoelectron Spectroscopy

  • Chapter

Abstract

In this chapter, we describe technical essences and several example works of angle-resolved photoelectron spectroscopy (ARPES) that is a surface science methodology to map out the electronic band structures of the matters. Successful results of demonstrating the valence band dispersion relations of crystalline organic semiconductor materials are introduced, which were acquired through resolution of inherent “sample charging” problems in photoelectron spectroscopy techniques. The effective mass of the valence hole and intermolecular transfer integral values of van-der-Waals molecular solids were directly derived as fundamental physical properties regulating the charge carrier transport in these solids. In addition, recent ARPES works on novel interface electronic structures of organic semiconducting molecules in contact with “quantum wells” in nanometer-thick metal thin-films are also reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pope M, Swenberg CE (eds) (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, New York

    Google Scholar 

  2. Inokuchi H (2006) The discovery of organic semiconductors. Its light and shadow. Org Electron 7(2):62–76

    Article  CAS  Google Scholar 

  3. Eley DD (1948) Phthalocyanines as semiconductors. Nature 162(4125):819–819

    Article  CAS  Google Scholar 

  4. Vartanyan A (1948) Semiconductor properties of organic dyes. 1. Phthalocyanines. Zhurnal Fizicheskoi Khimii 22(7):769–782

    CAS  Google Scholar 

  5. Akamatu H, Inokuchi H (1950) On the electrical conductivity of violanthrone, iso-violanthrone, and pyranthrone. J Chem Phys 18(6):810–811

    Article  CAS  Google Scholar 

  6. Akamatu H, Inokuchi H (1952) Photoconductivity of violanthrone. J Chem Phys 20(9):1481–1482

    Article  Google Scholar 

  7. Inokuchi H (1954) Photoconductivity of the condensed polynuclear aromatic compounds. Bull Chem Soc Jpn 27(I):22–27

    Article  CAS  Google Scholar 

  8. Kudo K, Yamashina M, Moriizumi T (1984) Field effect measurement of organic dye films. Jpn J Appl Phys 23(1):130–130

    Article  CAS  Google Scholar 

  9. Tang C (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185

    Article  CAS  Google Scholar 

  10. Tang C, VanSlyke S (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913–915

    Article  CAS  Google Scholar 

  11. Hiramoto M, Fujiwara H, Yokoyama M (1991) Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl Phys Lett 58(10):1062–1064

    Article  CAS  Google Scholar 

  12. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500

    Article  CAS  Google Scholar 

  13. Hüfner S (2003) Photoelectron spectroscopy, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  14. Grobman WD (1978) Angle-resolved photoemission from molecules in the independent-atomic-center approximation. Phys Rev B 17(12):4573–4585

    Article  CAS  Google Scholar 

  15. Ueno N, Kitamura A, Okudaira KK, Miyamae T, Harada Y, Hasegawa S, Ishii H, Inokuchi H, Fujikawa T, Miyazaki T, Seki K (1997) Angle-resolved ultraviolet photoelectron spectroscopy of thin films of bis (1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) on the MoS2 surface. J Chem Phys 107(6):2079–2089

    Article  CAS  Google Scholar 

  16. Nagamatsu S, Kera S, Okudaira K, Fujikawa T, Ueno N (2005) Multiple-scattering approach to angle-resolved ultraviolet photoelectron spectroscopy of large molecules. e-J Surf Sci Nanotechnol 3:461–465

    Article  CAS  Google Scholar 

  17. Seah MP, Dench WA (1979) Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal 1(1):2

    Article  CAS  Google Scholar 

  18. Nakayama Y, Kondoh H, Ohta T (2004) Structure-dependent mixed valence of Sm on Cu(111) studied by XPS and STM. Surf Sci 552(1–3):53–62

    Article  CAS  Google Scholar 

  19. Yoshida H, Sato N (2012) A precise analysis of the core-level energy difference between the surface and bulk region of organic semiconductor thin films. J Phys Chem C 116(18):10033–10038

    Article  CAS  Google Scholar 

  20. Yoshida H, Ito E, Hara M, Sato N (2012) Core level energy differences between the surface and bulk of organic semiconductor films: the effect of electrostatic polarization energy. Synth Met 161(23–24):2549–2553

    Article  CAS  Google Scholar 

  21. Nakayama Y, Morii K, Suzuki Y, Machida H, Kera S, Ueno N, Kitagawa H, Noguchi Y, Ishii H (2009) Origins of improved hole-injection efficiency by the deposition of MoO3 on the polymeric semiconductor poly(dioctylfluorene-alt -benzothiadiazole). Adv Funct Mater 19(23):3746–3752

    Article  CAS  Google Scholar 

  22. Cazaux J (1999) Mechanisms of charging in electron spectroscopy. J Electron Spectrosc Relat Phenomena 105(2–3):155–185

    Article  CAS  Google Scholar 

  23. Ueno N, Kera S (2008) Electron spectroscopy of functional organic thin films: deep insights into valence electronic structure in relation to charge transport property. Prog Surf Sci 83(10–12):490–557

    Article  CAS  Google Scholar 

  24. Kazda C (1925) The photo-electric threshold for mercury. Phys Rev 26(5):643–654

    Article  CAS  Google Scholar 

  25. Morris L (1931) Certain photoelectric properties of gold. Phys Rev 37(10):1263–1268

    Article  CAS  Google Scholar 

  26. Fowler R (1931) The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys Rev 38(1):45–56

    Article  CAS  Google Scholar 

  27. Sebenne C, Bolmont D, Guichar G, Balkanski M (1975) Surface states from photoemission threshold measurements on a clean, cleaved, Si (111) surface. Phys Rev B 12(8):3280–3285

    Article  CAS  Google Scholar 

  28. Miyazaki S, Maruyama T, Kohno A, Hirose M (1999) Photoelectron yield spectroscopy of electronic states at ultrathin SiO2/Si interfaces. Microelectron Eng 48:63–66

    Article  CAS  Google Scholar 

  29. Szuber J (2000) New procedure for determination of the interface Fermi level position for atomic hydrogen cleaned GaAs(100) surface using photoemission. Vacuum 57(2):209–217

    Article  CAS  Google Scholar 

  30. Watanabe I (1994) Optical oxidation potential: a new measure for reducing power. Anal Sci 10:229–239

    Article  CAS  Google Scholar 

  31. Inumaru K, Okubo Y, Fujii T, Yamanaka S (2000) Effects of organic vapour adsorption on the photoelectron emission from Au thin films in atmospheric air. Phys Chem Chem Phys 2:3681–3685

    Article  CAS  Google Scholar 

  32. Honda M, Kanai K, Komatsu K, Ouchi Y, Ishii H, Seki K (2007) Atmospheric effect of air, N2, O2, and water vapor on the ionization energy of titanyl phthalocyanine thin film studied by photoemission yield spectroscopy. J Appl Phys 102(10):103704

    Article  CAS  Google Scholar 

  33. Kane EO (1962) Theory of photoelectric emission from semiconductors. Phys Rev 127(1):131–141

    Article  CAS  Google Scholar 

  34. Kochi M, Harada Y, Hirooka T, Inokuchi H (1970) Photoemission from organic crystal in vacuum ultraviolet region. IV. Bull Chem Soc Jpn 43(9):2690–2702

    Article  CAS  Google Scholar 

  35. Nakayama Y, Machida S, Tsunami D, Kimura Y, Niwano M, Noguchi Y, Ishii H (2008) Photoemission measurement of extremely insulating materials: capacitive photocurrent detection in photoelectron yield spectroscopy. Appl Phys Lett 92(15):153306

    Article  CAS  Google Scholar 

  36. Himpsel F, Knapp J, VanVechten J, Eastman D (1979) Quantum photoyield of diamond(111) – a stable negative-affinity emitter. Phys Rev B 20(2):624–627

    Article  CAS  Google Scholar 

  37. Ley L, Ristein J, Meier F, Riedel M, Strobel P (2006) Surface conductivity of the diamond: a novel transfer doping mechanism. Phys B Condens Matter 376–377:262–267

    Article  CAS  Google Scholar 

  38. Sato N, Inokuchi H, Schmid B, Karl N (1985) Ultraviolet photoemission spectra of organic single crystals. J Chem Phys 83(11):5413–5419

    Article  CAS  Google Scholar 

  39. Vollmer A, Jurchescu OD, Arfaoui I, Salzmann I, Palstra TTM, Rudolf P, Niemax J, Pflaum J, Rabe JP, Koch N (2005) The effect of oxygen exposure on pentacene electronic structure. Eur Phys J E 17(3):339–343

    Article  CAS  Google Scholar 

  40. Nakayama Y, Machida S, Duhm S, Xin Q, Kera S, Ishii H, Ueno N (2011) Shed laser light on the valence band structures of organic semiconductor single crystals. J Jap Laser Process Soc 18(3):202–206 [in Japanese]

    Google Scholar 

  41. Sai N, Tiago M, Chelikowsky J, Reboredo F (2008) Optical spectra and exchange-correlation effects in molecular crystals. Phys Rev B 77(16):161306

    Article  CAS  Google Scholar 

  42. Machida S, Nakayama Y, Duhm S, Xin Q, Funakoshi A, Ogawa N, Kera S, Ueno N, Ishii H (2010) Highest-occupied-molecular-orbital band dispersion of rubrene single crystals as observed by angle-resolved ultraviolet photoelectron spectroscopy. Phys Rev Lett 104(15):156401

    Article  CAS  Google Scholar 

  43. Nakayama Y, Uragami Y, Machida S, Koswattage KR, Yoshimura D, Setoyama H, Okajima T, Mase K, Ishii H (2012) Full picture of the valence band structure of rubrene single crystals probed by angle-resolved and excitation energy dependent photoelectron spectroscopy. Appl Phys Expr 5(11):111601

    Article  CAS  Google Scholar 

  44. Vollmer A, Ovsyannikov R, Gorgoi M, Krause S, Oehzelt M, Lindblad A, Mårtensson N, Svensson S, Karlsson P, Lundvuist M, Schmeiler T, Pflaum J, Koch N (2012) Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF. J Electron Spectrosc Relat Phenomena 185(3–4):55–60

    Article  CAS  Google Scholar 

  45. Xie W, Prabhumirashi PL, Nakayama Y, Mcgarry KA, Geier ML, Uragami Y, Mase K, Douglas CJ, Ishii H, Hersam MC, Frisbie CD (2013) Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors. ACS Nano 7(11):10245–10256

    Article  CAS  Google Scholar 

  46. Nakayama Y, Uragami Y, Yamamoto M, Machida S, Kinjo H, Mase K, Koswattage KR, Ishii H (2014) Determination of the highest occupied molecular orbital energy of pentacene single crystals by ultraviolet photoelectron and photoelectron yield spectroscopies. Jpn J Appl Phys 53(1S):01AD03

    Article  CAS  Google Scholar 

  47. Xin Q, Duhm S, Bussolotti F, Akaike K, Kubozono Y, Aoki H, Kosugi T, Kera S, Ueno N (2012) Accessing surface brillouin zone and band structure of picene single crystals. Phys Rev Lett 108(22):226401

    Article  CAS  Google Scholar 

  48. Hasegawa S, Mori T, Imaeda K, Tanaka S, Yamashita Y, Inokuchi H, Fujimoto H, Seki K, Ueno N (1994) Intermolecular energy-band dispersion in oriented thin films of bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) by angle-resolved photoemission. J Chem Phys 100(9):6969–6974

    Article  CAS  Google Scholar 

  49. Koch N, Vollmer A, Salzmann I, Nickel B, Weiss H, Rabe J (2006) Evidence for temperature-dependent electron band dispersion in pentacene. Phys Rev Lett 96(15):156803

    Article  CAS  Google Scholar 

  50. Lin Y-Y, Gundlach DJ, Nelson SF, Jackson TN (1997) Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett 18(12):606–608

    Article  CAS  Google Scholar 

  51. Kakuta H, Hirahara T, Matsuda I, Nagao T, Hasegawa S, Ueno N, Sakamoto K (2007) Electronic structures of the highest occupied molecular orbital bands of a pentacene ultrathin film. Phys Rev Lett 98(24):247601

    Article  CAS  Google Scholar 

  52. Hatch R, Huber D, Höchst H (2009) HOMO band structure and anisotropic effective hole mass in thin crystalline pentacene films. Phys Rev B 80(8):081411(R)

    Article  CAS  Google Scholar 

  53. Hatch RC, Huber DL, Höchst H (2010) Electron–phonon coupling in crystalline pentacene films. Phys Rev Lett 104(4):047601

    Article  CAS  Google Scholar 

  54. Bouchoms IPM, Schoonveld WA, Vrijmoeth J, Klapwijk TM (1999) Morphology identification of the thin film phases of vacuum evaporated pentacene on SiO2 substrates. Synth Met 104(3):175–178

    Article  CAS  Google Scholar 

  55. Yoshida H, Sato N (2008) Crystallographic and electronic structures of three different polymorphs of pentacene. Phys Rev B 77(23):235205

    Article  CAS  Google Scholar 

  56. Ohtomo M, Suzuki T, Shimada T, Hasegawa T (2009) Band dispersion of quasi-single crystal thin film phase pentacene monolayer studied by angle-resolved photoelectron spectroscopy. Appl Phys Lett 95(12):123308

    Article  CAS  Google Scholar 

  57. Shimada T, Suzuki T, Ohtomo M, Hasegawa T (2009) Epitaxial growth and photoelectron spectroscopy of pentacene. Hyomen Kagaku (J Surf Sci Soc Jpn) 30(1):7–10 [in Japanese]

    Article  CAS  Google Scholar 

  58. Puschnig P, Berkebile S, Fleming AJ, Koller G, Emtsev K, Seyller T, Riley JD, Ambrosch-Draxl C, Netzer FP, Ramsey MG (2009) Reconstruction of molecular orbital densities from photoemission data. Science 326(5953):702–706

    Article  CAS  Google Scholar 

  59. Ziroff J, Forster F, Schöll A, Puschnig P, Reinert F (2010) Hybridization of organic molecular orbitals with substrate states at interfaces: PTCDA on silver. Phys Rev Lett 104(23):233004

    Article  CAS  Google Scholar 

  60. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA (2004) Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303(5664):1644–1646

    Article  CAS  Google Scholar 

  61. Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S (2007) Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl Phys Lett 90(10):102120

    Article  CAS  Google Scholar 

  62. Käfer D, Ruppel L, Witte G, Wöll C (2005) Role of molecular conformations in rubrene thin film growth. Phys Rev Lett 95(16):166602

    Article  CAS  Google Scholar 

  63. Nakayama Y, Machida S, Minari T, Tsukagoshi K, Noguchi Y, Ishii H (2008) Direct observation of the electronic states of single crystalline rubrene under ambient condition by photoelectron yield spectroscopy. Appl Phys Lett 93(17):173305

    Article  CAS  Google Scholar 

  64. Sato N, Seki K, Inokuchi H (1981) Polarization energies of organic solids determined by ultraviolet photoelectron spectroscopy. J Chem Soc Faraday Trans 2(77):1621–1633

    Article  Google Scholar 

  65. Wang L, Chen S, Liu L, Qi D, Gao X, Wee ATS (2007) Thickness-dependent energy level alignment of rubrene adsorbed on Au(111). Appl Phys Lett 90(13):132121

    Article  CAS  Google Scholar 

  66. Fukagawa H, Yamane H, Kataoka T, Kera S, Nakamura M, Kudo K, Ueno N (2006) Origin of the highest occupied band position in pentacene films from ultraviolet photoelectron spectroscopy: hole stabilization versus band dispersion. Phys Rev B 73(24):245310

    Article  CAS  Google Scholar 

  67. Duhm S, Heimel G, Salzmann I, Glowatzki H, Johnson RL, Vollmer A, Rabe JP, Koch N (2008) Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nat Mater 7(4):326–332

    Article  CAS  Google Scholar 

  68. Duhm S, Xin Q, Hosoumi S, Fukagawa H, Sato K, Ueno N, Kera S (2012) Charge reorganization energy and small polaron binding energy of rubrene thin films by ultraviolet photoelectron spectroscopy. Adv Mater 24(7):901–905

    Article  CAS  Google Scholar 

  69. Da Silva Filho DA, Kim E-G, Brédas J-L (2005) Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy. Adv Mater 17(8):1072–1076

    Article  CAS  Google Scholar 

  70. Li ZQ, Podzorov V, Sai N, Martin MC, Gershenson ME, Di Ventra M, Basov DN (2007) Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors. Phys Rev Lett 99(1):016403

    Article  CAS  Google Scholar 

  71. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107(4):926–952

    Article  CAS  Google Scholar 

  72. Troisi A (2007) Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene. Adv Mater 19(15):2000–2004

    Article  CAS  Google Scholar 

  73. Girlando A, Grisanti L, Masino M, Bilotti I, Brillante A, Della Valle R, Venuti E (2010) Peierls and holstein carrier-phonon coupling in crystalline rubrene. Phys Rev B 82(3):035208

    Article  CAS  Google Scholar 

  74. Kera S, Yamane H, Ueno N (2009) First-principles measurements of charge mobility in organic semiconductors: valence hole–vibration coupling in organic ultrathin films. Prog Surf Sci 84(5–6):135–154

    Article  CAS  Google Scholar 

  75. Hulea IN, Fratini S, Xie H, Mulder CL, Iossad NN, Rastelli G, Ciuchi S, Morpurgo AF (2006) Tunable Fröhlich polarons in organic single-crystal transistors. Nat Mater 5(12):982–986

    Article  CAS  Google Scholar 

  76. Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ (2008) A topological Dirac insulator in a quantum spin hall phase. Nature 452(7190):970–974

    Article  CAS  Google Scholar 

  77. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108(24):245501

    Article  CAS  Google Scholar 

  78. Chen P, Wu X, Sun X, Lin J, Ji W, Tan K (1999) Electronic structure and optical limiting behavior of carbon nanotubes. Phys Rev Lett 82(12):2548–2551

    Article  CAS  Google Scholar 

  79. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103(38):8116–8121

    Article  CAS  Google Scholar 

  80. Himpsel FJ, Altmann KN, Crain JN, Kirakosian A, Lin J-L, Liebsch A, Zhukov VP (2002) Photoelectron spectroscopy of atomic wires. J Electron Spectrosc Relat Phenomena 126(1):89–99

    Article  CAS  Google Scholar 

  81. Colvin V, Alivisatos A, Tobin J (1991) Valence-band photoemission from a quantum-dot system. Phys Rev Lett 66(21):2786–2789

    Article  CAS  Google Scholar 

  82. Konchenko A, Nakayama Y, Matsuda I, Hasegawa S, Nakamura Y, Ichikawa M (2006) Quantum confinement observed in Ge nanodots on an oxidized Si surface. Phys Rev B 73(11):113311

    Article  CAS  Google Scholar 

  83. Nakayama Y, Matsuda I, Hasegawa S, Ichikawa M (2006) Quantum regulation of Ge nanodot state by controlling barrier of the interface layer. Appl Phys Lett 88(25):253102

    Article  CAS  Google Scholar 

  84. Nakayama Y, Matsuda I, Hasegawa S, Ichikawa M (2008) Growth, quantum confinement and transport mechanisms of Ge nanodot arrays formed on a SiO2 monolayer. e-J Surf Sci Nanotechnol 6(August):191–201

    Article  CAS  Google Scholar 

  85. Chiang T-C (2000) Photoemission studies of quantum well states in thin films. Surf Sci Rep 39(7):181–235

    Article  CAS  Google Scholar 

  86. Matsuda I, Tanikawa T, Hasegawa S, Yeom HW, Tono K, Ohta T (2004) Quantum-well states in ultra-thin metal films on semiconductor surfaces. e-J Surf Sci Nanotechnol 2(May):169–177

    Article  CAS  Google Scholar 

  87. Kim J, Qin S, Yao W, Niu Q, Chou MY, Shih C-K (2010) Quantum size effects on the work function of metallic thin film nanostructures. Proc Natl Acad Sci U S A 107(29):12761–12765

    Article  CAS  Google Scholar 

  88. Aballe L, Barinov A, Locatelli A, Heun S, Kiskinova M (2004) Tuning surface reactivity via electron quantum confinement. Phys Rev Lett 93(19):196103

    Article  CAS  Google Scholar 

  89. Miyata N, Horikoshi K, Hirahara T, Hasegawa S, Wei C, Matsuda I (2008) Electronic transport properties of quantum-well states in ultrathin Pb(111) films. Phys Rev B 78(24):245405

    Article  CAS  Google Scholar 

  90. Guo Y, Zhang Y-F, Bao X-Y, Han T-Z, Tang Z, Zhang L-X, Zhu W-G, Wang EG, Niu Q, Qiu ZQ, Jia J-F, Zhao Z-X, Xue Q-K (2004) Superconductivity modulated by quantum size effects. Science 306(5703):1915–1917

    Article  CAS  Google Scholar 

  91. Tang S-J, Lee Y-R, Chang S-L, Miller T, Chiang T-C (2006) Umklapp-mediated quantization of electronic states in Ag films on Ge(111). Phys Rev Lett 96(21):216803

    Article  CAS  Google Scholar 

  92. Lin M-K, Nakayama Y, Wang C-Y, Hsu J-C, Pan C-H, Machida S, Pi T-W, Ishii H, Tang S-J (2012) Interfacial properties at the organic-metal interface probed using quantum well states. Phys Rev B 86(15):155453

    Article  CAS  Google Scholar 

  93. Yoshimura D, Ishii H, Ouchi Y, Ito E, Miyamae T, Hasegawa S, Okudaira KK, Ueno N, Seki K (1999) Angle-resolved ultraviolet photoelectron spectroscopy and theoretical simulation of a well-ordered ultrathin film of tetratetracontane (n-C44H90) on Cu(100). Phys Rev B 60(12):9046–9060

    Article  CAS  Google Scholar 

  94. Forster F, Hüfner S, Reinert F (2004) Rare gases on noble-metal surfaces: an angle-resolved photoemission study with high energy resolution. J Phys Chem B 108(38):14692–14698

    Article  CAS  Google Scholar 

  95. Nakayama Y, Lin M-K, Wang C-Y, Pi T-W, Ishii H, Tang S-J (2012) Interface electronic structure of zinc-phthalocyanine on the silver thin-film quantum-well. e-J Surf Sci Nanotechnol 10:149–152

    Article  CAS  Google Scholar 

  96. Häming M, Scheuermann C, Schöll A, Reinert F, Umbach E (2009) Coverage dependent organic–metal interaction studied by high-resolution core level spectroscopy: SnPc (sub)monolayers on Ag(111). J Electron Spectrosc Relat Phenomena 174(1–3):59–64

    Article  CAS  Google Scholar 

  97. Gargiani P, Angelucci M, Mariani C, Betti MG (2010) Metal-phthalocyanine chains on the Au(110) surface: interaction states versus d-metal states occupancy. Phys Rev B 81(8):085412

    Article  CAS  Google Scholar 

  98. Kröger I, Stadtmüller B, Stadler C, Ziroff J, Kochler M, Stahl A, Pollinger F, Lee T-L, Zegenhagen J, Reinert F, Kumpf C (2010) Submonolayer growth of copper-phthalocyanine on Ag(111). New J Phys 12(8):083038

    Article  CAS  Google Scholar 

  99. Giovanelli L, Amsalem P, Angot T, Petaccia L, Gorovikov S, Porte L, Goldoni A, Themlin J-M (2010) Valence band photoemission from the Zn-phthalocyanine/Ag(110) interface: charge transfer and scattering of substrate photoelectrons. Phys Rev B 82(12):125431

    Article  CAS  Google Scholar 

  100. Lin M-K, Nakayama Y, Chen C-H, Wang C-Y, Jeng H-T, Pi T-W, Ishii H, Tang S-J (2013) Tuning gap states at organic-metal interfaces via quantum size effects. Nat Commun 4:2925

    Google Scholar 

  101. Ishiyama N, Kubo M, Kaji T, Hiramoto M (2013) Tandem organic solar cells formed in co-deposited films by doping. Org Electron 14(7):1793–1796

    Article  CAS  Google Scholar 

  102. Yamane H, Kosugi N (2013) Substituent-induced intermolecular interaction in organic crystals revealed by precise band-dispersion measurements. Phys Rev Lett 111(8):086602

    Article  CAS  Google Scholar 

  103. Nakayama Y, Niederhausen J, Machida S, Uragami Y, Kinjo H, Vollmer A, Rabe JP, Koch N, Ishii H (2013) Valence band structure of rubrene single crystals in contact with an organic gate dielectric. Org Electron 14(7):1825–1832

    Article  CAS  Google Scholar 

  104. Yoshida H (2012) Near-ultraviolet inverse photoemission spectroscopy using ultra-low energy electrons. Chem Phys Lett 539–540:180–185

    Article  CAS  Google Scholar 

  105. Yamamoto M, Terui T, Ueda R, Imazu K, Tamada K, Sakano T, Matsuda K, Ishii H, Noguchi Y (2012) Photoinduced conductance switching in a dye-doped gold nanoparticle transistor. Appl Phys Lett 101(2):023103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Nakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakayama, Y., Ishii, H. (2015). Exploration into the Valence Band Structures of Organic Semiconductors by Angle-Resolved Photoelectron Spectroscopy. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_10

Download citation

Publish with us

Policies and ethics