Skip to main content

Massive Stars : Example Targets for Spectroscopy

  • Chapter
  • First Online:
  • 2175 Accesses

Part of the book series: Springer Praxis Books ((ASTRONOMY))

Abstract

During his studies in Canada, Thomas was thrilled by stellar winds and now he wanted to explore them with his private telescope. He was dreaming of clumps, outbursts and stellar disks in the wind, the velocity law and new fantastic discoveries with his spectrograph. Klaus was eager to model the non-thermal equilibrium of stellar atmospheres. However, non-spherical inhomogeneous winds were far too complicated for such a task. He first had to perform such calculations for normal O stars. Thomas was strictly against that. He opposed it. But unfortunately Klaus as well was owner of the telescope…

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here, we have only considered non-relativistic speeds. However, in spectroscopic studies of distant objects (galaxies, quasars, etc.) we must consider their relativistic velocities. For the observed frequency wavelength λ this is \(\lambda ^{{\prime}} =\lambda \cdot \sqrt{(1 - \frac{V } {c} )/(1 -\frac{V ^{2}} {c^{2}} )}\).

  2. 2.

    If however layer-dependent abundances are to be estimated, numerical spectra have to be computed and iteratively compared to real spectra.

  3. 3.

    This is in contrast to H transitions which define the continuum in cooler stars.

  4. 4.

    It is generally well known that WR lines are significantly shifted relative to their true motion, mostly red-shifted, but sometimes blue-shifted.

  5. 5.

    The average opacity \(\overline{\kappa }\) of a medium is calculated with the wavelength depended absorption coefficient a(λ). It is integrated over the distance d the light travels in the medium. \(\overline{\kappa } =\int _{ o}^{d}a(r,\lambda )dr\). If photons of wavelength λ travel through a medium of opacity κ and density ρ along the path r the light intensity will be reduced by the amount \(I(r) = I_{0}e^{-\kappa \rho r}\).

  6. 6.

    B[e] stars show forbidden emission lines in their spectra. The group is very heterogeneous and contains, e.g., massive supergiants, pre-main sequence stars and symbiotic stars. Because of this variety Lamers et al. (1998) propose to use the name “B[e] phenomenon” rather than B[e] stars dividing these objects into the five classes (a) B[e] supergiants or sgB[e] stars, (b) pre-main sequence B[e]-type stars or HAeB[e] stars, (c) compact planetary nebulae B[e]-type stars or cPNB[e] stars, (d) symbiotic B[e]-type stars or SymB[e] stars and (e) unclassified B[e]-type stars or unclB[e] stars.

  7. 7.

    The temperature concept is inaccurate in this regard and we introduce it only as a reference. Because of the very thin plasma in non-thermal equilibrium the energy transfer is not performed by particle collisions but by radiation transfer from the stellar short-wave UV radiation. The energy transfer is therefore not calculated with the Planck function but with the general source function.

  8. 8.

    This is valid for recombination lines as Hα but not for resonance lines.

  9. 9.

    This is only valid for optically thin winds down to the photosphere. WR winds are optically thick below \(\sim 2R_{\star }\).

  10. 10.

    Gayley and Owocki (1995) pointed out that the “momentum problem” is actually an “opacity problem” of having enough lines spread over the flux spectrum. Further theoretical considerations can be found, e.g., in Gayley et al. (1995), Gräfener et al. (2011), Owocki et al. (2004) and the references therein.

  11. 11.

    Later observations of ζPuppis with the XMM X-ray satellite by Naze et al. (2011) showed no short-term variations above the 1 % detection limit. This implies the presence of at least 10,000 elementary clumps in the wind.

  12. 12.

    Given the non-linear velocity law (Eq. 14.1), constant acceleration of clumps is only an approximation. This approximation is acceptable with respect to the short time interval and, consequently, short radial distances covered in the wind.

  13. 13.

    In contrast to the classical helium burning WR stars, some hydrogen burning WR stars on the main sequence have very high masses beyond 60 M .

  14. 14.

    This is only valid if a radial velocity component in the corresponding observation is present.

  15. 15.

    In our Galaxy, only a few hundred WR stars are known until today.

  16. 16.

    The IMF describes the distribution of stellar masses in a newly developing stellar population. The IMF follows the power law \(\frac{dN} {dM} = M^{-\alpha }\). A detailed investigation of the IMF variation for the Galactic field is given by Kroupa (2000).

  17. 17.

    In globular clusters with the oldest populations and lowest metallicity no life is therefore expected.

Bibliography

  • Abbott, D. C., & Lucy, L. B. (1985). The Astrophysical Journal, 288, 679.

    Article  ADS  Google Scholar 

  • Bartzakos, P., Moffat, A. F. J., & Niemela, V. S. (2001). Monthly Notices of the Royal Astronomical Society, 324, 33.

    Article  ADS  Google Scholar 

  • Beals, C. S. (1929). Monthly Notices of the Royal Astronomical Society, 90, 202.

    Article  ADS  Google Scholar 

  • Bjorkmann, J. E., & Cassinelli, J. P. (1993). The Astrophysical Journal, 409, 429.

    Article  ADS  Google Scholar 

  • Buil, C. (2006). http://www.astrosurf.com/buil/bestars/m45/img.htm.

  • Castor, J. I., & Lamers, H. J. G. L. M. (1979). The Astrophysical Journal Supplement Series, 39, 481.

    Google Scholar 

  • Cecil, G., Bland-Hawthorn, J., Veilleux, S., & Filippenko, A. V. (2001). The Astrophysical Journal, 555, 338.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. (1934). Monthly Notices of the Royal Astronomical Society, 94, 522.

    Article  ADS  MATH  Google Scholar 

  • Chlebowski, T., Harnder, F. R., & Sciortino, S. (1989). The Astrophysical Journal, 341, 427.

    Article  ADS  Google Scholar 

  • Conti, P. S. (1976). Societé Royale des Sciences de Liége. Mémoires, 9 (p. 193); Discussion (p. 213).

    Google Scholar 

  • Cranmer, S. R., & Owocki, S. P. (1996). The Astrophysical Journal, 462, 469.

    Article  ADS  Google Scholar 

  • Crowther, P. A., Smith, L. J., Hillier, D. J., & Schmutz, W. (1995). Astronomy and Astrophysics, 293, 427.

    ADS  Google Scholar 

  • Crowther, P. A. (2007). Annual Review of Astronomy & Astrophysics, 45(1), 177.

    Google Scholar 

  • Eversberg, T., Lépine, S., & Moffat, A. F. J. (1998). The Astrophysical Journal, 494, 799.

    Article  ADS  Google Scholar 

  • Eversberg, T., Moffat, A. F. J., & Marchenko, S. V. (1999). Publications of the Astronomical Society of the Pacific, 111, 861.

    Article  ADS  Google Scholar 

  • Fahed, R., Moffat, A. F. J., Zorec, J., Eversberg, T., Chené, A. N., Alves, F., et al. (2011). Monthly Notices of the Royal Astronomical Society, 418, 2.

    Article  ADS  Google Scholar 

  • Gayley, K. G., & Owocki, S. P. (1995) The Astrohysical Journal, 446, 801.

    Article  ADS  Google Scholar 

  • Gayley, K. G., Owocki, S. P., & Cranmer, S. R. (1995). The Astrohysical Journal, 442, 296.

    Article  ADS  Google Scholar 

  • Gräfener, G., Vink, J. S., de Koter, A., & Langer, N. (2011) Astronomy & Astrophysics, 535, 56.

    Article  ADS  Google Scholar 

  • Grosdidier, Y., Moffat, A. F. J., Blais-Ouellette, S., Joncas, G., & Acker, A. (2001). The Astrophysical Journal, 562, 753.

    Article  ADS  Google Scholar 

  • Hamann, W.-R., Gräfener, G., & Liermann, A. (2006). Astronomy & Astrophysics, 457, 1015.

    Article  ADS  Google Scholar 

  • Hamann, W. R. (2011). Private communication.

    Google Scholar 

  • Hill, G. M., Moffat, A. F. J., St-Louis, N., & Bartzakos, P. (2000) Monthly Notices of the Royal Astronomical Society, 318, 402.

    Article  ADS  Google Scholar 

  • Hillier, D. J., Kudritzki, R.-P., Pauldrach, A. W. A., Baade, D., Cassinelli, J. P., Puls, J., et al. (1993). Astronomy & Astrophysics, 276, 128.

    Google Scholar 

  • Kaper, L., Henrichs, H. F., Fullerton, A. W., Ando, H., Bjorkman, K. S., Gies, D. R., et al. (1997). The Astrohysical Journal, 327, 281.

    ADS  Google Scholar 

  • Kroupa, P. (2000, March 20–24). Astronomische Gesellschaft meeting abstracts. Heidelberg. Talk no. 11.

    Google Scholar 

  • Lamers, H. J. G. L. M., Zickgraf, F.-J., de Winter, D., Houziaux, L., & Zorec, J. (1998). Astronomy & Astrophysics, 340, 117.

    Google Scholar 

  • Lamers, H. J. G. L. M., & Cassinelli, J. P. (1999). Introduction to stellar winds. Cambridge University Press

    Google Scholar 

  • Langer, N., Hamann, W.-R., Lennon, M., Najarro, F. Pauldrach, A. W. A., & Puls, J. (1994). Astronomy and Astrophysics, 290, 819.

    ADS  Google Scholar 

  • Lépine, S., Eversberg, T., & Moffat, A. F. J. (1999). The Astronomical Journal, 117, 1441.

    Article  ADS  Google Scholar 

  • Lépine, S., & Moffat, A. F. J. (1999). The Astronomical Journal, 514, 909.

    Article  Google Scholar 

  • Lépine, S., & Moffat, A. F. J. (2008). The Astronomical Journal, 136, 548.

    Article  ADS  Google Scholar 

  • Lesh, J. R. (1968). The Astrophysical Journal Supplement Series, 17, 371.

    Article  ADS  Google Scholar 

  • Lührs, S. (1997). Publications of the Astronomical Society of the Pacific, 109, 504.

    Article  Google Scholar 

  • Maeder, A. (1999). Astronomy & Astrophysics, 347, 185.

    ADS  Google Scholar 

  • Marchenko, S. V., Moffat, A. F. J., Vacca, W. D., Côté, S., & Doyon, R. (2002). The Astrophysical Journal, 565, 59.

    Article  ADS  Google Scholar 

  • Marchenko, S. V., Moffat, A. F. J., Ballereau, D., Chauville, J., Zorec, J., Hill, G. M., et al. (2003). The Astrophysical Journal, 596, 1295.

    Article  ADS  Google Scholar 

  • Meynet, G., Georgy, C., Hirschi, R., Maeder, A., Massey, P., Przybilla, N., et al. (2011). In G. Rauw, M. De Becker, Y. Nazé, J.-M. Vreux, & P. Williams (Eds.), Proceedings of the 39th Liège Astrophysical Colloquium (Vol. 80, p. 266).

    Google Scholar 

  • Moffat, A. F. J., & Robert, C. (1994). The Astrophysical Journal, 421, 310.

    Article  ADS  Google Scholar 

  • Moore, B. D., Walter, D. K., Hester, J. J., Scowen, P. A., Dufour, R. J., & Buckalew, B. A. (2002). The Astronomical Journal, 124, 3313.

    Article  ADS  Google Scholar 

  • Naze, Y., Rauw, G., Herve, A., & Oskinova, L. (2011, June 27–30). In The X-ray universe 2011, Conference held in Berlin, Germany. Article id.111.

    Google Scholar 

  • Nemravová, J., Harmanec, P., Koubský, P., Miroshnichenko, A., Yang, S., S̆lechta, M., et al. (2012). Astronomy & Astrophysics, 537, 11.

    Google Scholar 

  • Okazaki, A. T. (1991). Publications of the Astronomical Society of Japan, 43, 75.

    ADS  Google Scholar 

  • Owocki, S. P. (1996). Quebec – Delaware annual meeting on massive stars. Private communication

    Google Scholar 

  • Owocki, S. P. (1998). Turbulence in line-driven stellar winds. Workshop on ‘Interstellar Turbulence’ held January 1998 in Puebla, Mexico.

    Google Scholar 

  • Owocki, S. P. (2004). In M. Heydari-Malayeri, Ph. Stee, & J.-P. Zahn (Eds.), Evolution of Massive Stars. EAS Publications Series (Vol. 13, p. 163).

    Google Scholar 

  • Owocki, S. P., Gayley, K. G., & Shavic, N. J. (2004). The Astrophysical Journal, 616, 525.

    Article  ADS  Google Scholar 

  • Owocki, S. P. (2013). Private communication.

    Google Scholar 

  • Robert, C. (1992). Dissertation Abstracts International (Vol. 55-03, Section B, p. 0953). PhD thesis, Université de Montréal (Canada).

    Google Scholar 

  • Ruždjak, et al. (2009). Astronomy & Astrophysics, 506, 1319.

    Google Scholar 

  • Sander, A., Hamann, W.-R., & Todt, H. (2012). Astronomy & Astrophysics, 540, A144.

    Article  ADS  Google Scholar 

  • Sletteback, A. (1979). Space Science Review, 23, 541.

    ADS  Google Scholar 

  • Smith, M. A., Robinson, R. D., & Corbet, R. H. D. (1998). The Astrophysical Journal, 503, 877.

    Article  ADS  Google Scholar 

  • Smith, M. A., Robinson, R. D., & Hatzes, A. P. (1998). The Astrophysical Journal, 507, 945.

    Article  ADS  Google Scholar 

  • Smith, M. A., & Robinson, R. D. (1999). The Astrophysical Journal, 517, 866.

    Article  ADS  Google Scholar 

  • St-Louis, N., Doyon, R., Chagnon, F., & Nadeau, D. (1998). The Astronomical Journal, 115, 2475.

    Article  ADS  Google Scholar 

  • Stee, Ph., Vakili, F., Bonneau, D., & Mourard, D. (1998). Astronomy & Astrophysics, 332, 268.

    ADS  Google Scholar 

  • Sundqvist, J. O., Owocki, S. P., & Puls, J. (2012). In ASP Conference Series (Vol. 465, p. 119).

    Google Scholar 

  • Telting, J, H., & Kaper, L. (1994). Astronomy and Astrophysics, 284, 515.

    Google Scholar 

  • Walder, R., & Folini, D. (2002). In Proc. IAU Symposium No. 212.

    Google Scholar 

  • Wood, K., Brown, J. C., & Fox, G. K. (1993). Astronomy and Astrophysics, 271, 492.

    ADS  Google Scholar 

  • v. Zeipel, H. (1924). Monthly Notices of the Royal Astronomical Society, 84, 702.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eversberg, T., Vollmann, K. (2015). Massive Stars : Example Targets for Spectroscopy. In: Spectroscopic Instrumentation. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44535-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44535-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44534-1

  • Online ISBN: 978-3-662-44535-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics