Skip to main content

Sparse Structure for Visual Information Sensing: Theory and Algorithms

  • Chapter
  • First Online:
High-Dimensional and Low-Quality Visual Information Processing

Part of the book series: Springer Theses ((Springer Theses))

  • 750 Accesses

Abstract

This chapter proposes to utilize sparse structure for visual information sensing and understanding. In detail, concentered on the fundamental theory of compressive sensing, we will discuss the problem of low-rank structure learning (LRSL) from sparse outliers. Different from traditional approaches, which directly utilize convex norms to measure the sparseness, our method introduces more reasonable non-convex measurements to enhance the sparsity in both the intrinsic low-rank structure and the sparse corruptions. Although the proposed optimization is no longer convex, it still can be effectively solved by a majorization–minimization (MM)-type algorithm. From the theoretic perspective, we have proved that the MM-type algorithm can converge to a stationary point after successive iterations. The proposed model is applied to solve a number of computer vision and information processing tasks, e.g., face image enhancement, object tracking, and time series clustering.

Parts of this chapter are reproduced from [1] with permission number 3410110407533 \(@\) IEEE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In cases, the weighting matrices may cause complex numbers due to the inverse operation. In such condition, we use the approximating matrices \(\mathbf {W}_Y=\mathbf {U}(\Sigma +\delta \mathbf {I}_m)^{-1/2}\mathbf {U}^T\) and \(\mathbf {W}_Z=\mathbf {V}(\Sigma +\delta \mathbf {I}_m)^{-1/2}\mathbf {V}^T\) in LHR.

  2. 2.

    The optimization for \(p\)HR is very similar by changing the weight matrices.

  3. 3.

    We only report the result of \(p=1/3\) here since in the previous numerical simulation, \(p\)HR (\(p=1/3\)) achieves higher recovery accuracy than \(p\)HR with \(P=2/3\).

  4. 4.

    For example, in the industrial category of drug manufactures, it is not possible to get the historical data of CIPILA.LTD from [28] which is the only the interface for us to get the stock prices in USA.

References

  1. Hu S, Wang J (2003) Absolute exponential stability of a class of continuous-time recurrent neural networks. IEEE Trans Neural Netw 14(1):35–45

    Article  Google Scholar 

  2. Goldberg AB, Zhu X, Recht B, Xu J-M, Nowak RD (2010) Transduction with matrix completion: three birds with one stone. In: Advances in Neural Information Processing Systems, pp 757–765

    Google Scholar 

  3. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  4. Hu S, Wang J (2001) Quadratic stabilizability of a new class of linear systems with structural independent time-varying uncertainty. Automatica 37(1):51–59. Available http://www.sciencedirect.com/science/article/pii/S0005109800001229

  5. Deng Y, Li Y, Qian Y, Ji X, Dai Q (2014) Visual words assignment via information-theoretic manifold embedding. IEEE Trans Cybern

    Google Scholar 

  6. Deng Y, Liu Y, Dai Q, Zhang Z, Wang Y (2012) Noisy depth maps fusion for multiview stereo via matrix completion. IEEE J Sel Top Sig Process 6(5):566–582

    Article  Google Scholar 

  7. Deng Y, Dai Q, Zhang Z (2011) Graph laplace for occluded face completion and recognition. IEEE Trans Image Process 20(8):2329–2338

    Article  MathSciNet  Google Scholar 

  8. Deng Y, Dai Q, Wang R, Zhang Z (2012) Commute time guided transformation for feature extraction. Comput Vis Image Underst 116(4):473–483

    Article  Google Scholar 

  9. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theor 52(4):1289–1306

    Article  MATH  MathSciNet  Google Scholar 

  10. Recht B, Fazel M, Parrilo PA (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev 52(3):471–501

    Article  MATH  MathSciNet  Google Scholar 

  11. Deng Y, Dai Q, Liu R, Zhang Z, Hu S (2013) Low-rank structure learning via nonconvex heuristic recovery. IEEE Trans Neural Netw Learn Syst 24(3):383–396

    Article  Google Scholar 

  12. Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3): 11

    Google Scholar 

  13. Chandrasekaran V, Sanghavi S, Parrilo PA, Willsky AS (2011) Rank-sparsity incoherence for matrix decomposition. SIAM J Optim 21(2):572–596

    Article  MATH  MathSciNet  Google Scholar 

  14. Hsu D, Kakade SM, Zhang T (2010) Robust matrix decomposition with outliers. arXiv:1011.1518

  15. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: Computer vision and pattern recognition. IEEE Conference on CVPR 2009. IEEE 2009, pp 1794–1801

    Google Scholar 

  16. Fazel M (2002) Matrix rank minimization with applications. Ph.D. dissertation, PhD thesis, Stanford University

    Google Scholar 

  17. Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted ? 1 minimization. J Fourier Anal Appl 14(5–6):877–905

    Article  MATH  MathSciNet  Google Scholar 

  18. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc: Series B (Stat Methodol) 67(2):301–320

    Article  MATH  MathSciNet  Google Scholar 

  19. Foo C-S, Do CB, Ng AY (2009) A majorization-minimization algorithm for (multiple) hyperparameter learning. In: Proceedings of the 26th annual international conference on machine learning. ACM, pp 321–328

    Google Scholar 

  20. Mohan K, Fazel M (2010) Reweighted nuclear norm minimization with application to system identification. In: American control conference (ACC). IEEE, pp 2953–2959

    Google Scholar 

  21. Hunter D, Li R (2005) Variable selection using mm algorithms. Ann Stat 33(4):1617

    Article  MATH  MathSciNet  Google Scholar 

  22. Lange K (1995) A gradient algorithm locally equivalent to the em algorithm. J Roy Stat Soc Series B (Methodol) 425–437

    Google Scholar 

  23. Lin Z, Chen M, Ma Y (2011) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Technical report arXiv:1009.5055v2

  24. Benedek C, Sziranyi T (2008) Bayesian foreground and shadow detection in uncertain frame rate surveillance videos. IEEE Trans Image Process 17(4):608–621

    Article  MathSciNet  Google Scholar 

  25. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24:381–395. Available http://doi.acm.org/10.1145/358669.358692

  26. Vidal R, Ma Y, Sastry S (2003) Generalized principal component analysis (gpca). In: Proceedings of 2003 IEEE computer society conference on computer vision and pattern recognition, vol 1, pp I-621– I-628

    Google Scholar 

  27. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  28. Yahoo!finacial, http://finance.yahoo.com

  29. Google finacial. Available http://www.google.com.hk/finance?q=

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Deng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deng, Y. (2015). Sparse Structure for Visual Information Sensing: Theory and Algorithms. In: High-Dimensional and Low-Quality Visual Information Processing. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44526-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44526-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44525-9

  • Online ISBN: 978-3-662-44526-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics