Advertisement

Soft Robot Control with a Behaviour-Based Architecture

  • Christopher Armbrust
  • Lisa Kiekbusch
  • Thorsten Ropertz
  • Karsten Berns
Conference paper

Abstract

In this chapter, we explain how behaviour-based approaches can be used to control soft robots. Soft robotics is a strongly growing field generating innovative concepts and novel systems. The term “soft” can refer to the basic structure, the actuators, or the sensors of these systems. The soft aspect results in a number of challenges that can only be solved with new modelling, control, and analysis methods whose novelty matches those of the hardware. We will present prior achievements in the area of behaviour-based systems and suggest their application in soft robots with the aim to increase the fault tolerance while improving the reaction to unexpected disturbances.

Keywords

Model Check Bipedal Robot Behaviour Network Satisfiability Modulo Theory Robotic Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Albu-Schaeffer A, Eiberger O, Grebenstein M, Haddadin S, Ott C, Wimboeck T, Wolf S, Hirzinger G (2008) Soft robotics. IEEE Robotics and Automation Magazine 15(3): 20–30CrossRefGoogle Scholar
  2. [2]
    Arkin R (1998) Behaviour-Based Robotics. MIT Press, ISBN-10: 0-262-01165-4; ISBN-13: 978-0-262-01165-5Google Scholar
  3. [3]
    Armbrust C, Braun T, Föhst T, Proetzsch M, Renner A, Schäfer B H, Berns K (2010) RAVON – the robust autonomous vehicle for off-road navigation. In: Baudoin Y, Habib M K (ed) Using robots in hazardous environments: Landmine detection, de-mining and other applications, Woodhead Publishing Limited, ISBN: 1 84569 786 3; ISBN-13: 978 1 84569 786 0Google Scholar
  4. [4]
    Armbrust C, Kiekbusch L, Berns K (2011) Using behaviour activity sequences for mo-tion generation and situation recognition. In: Proceedings of the International Conference on Informatics in Control, Automation and Robotics (ICINCO). Noordwijkerhout, The Netherlands, pp 120–127Google Scholar
  5. [5]
    Armbrust C, Kiekbusch L, Ropertz T, Berns K (2012) Verification of behaviour networks using finite-state automata. In: Glimm B, Krüger A (ed) KI 2012: Advances in Artificial Intelligence. Springer, Saarbrücken, GermanyGoogle Scholar
  6. [6]
    Armbrust C, Kiekbusch L, Ropertz T, Berns K (2013) Quantitative aspects of behaviour network verification. In: Zaiane O, Zilles S (ed) Proceedings of the 26th Canadian Con-ference on Artificial Intelligence. Lecture Notes in Computer Science, vol 7884. Spring-er, Regina. Saskatchewan, CanadaGoogle Scholar
  7. [7]
    Armbrust C, Kiekbusch L, Ropertz T, Berns K (2013) Tool-assisted verification of be-haviour networks. In: Proceedings of the 2013 IEEE International Conference on Robot-ics and Automation (ICRA 2013). Karlsruhe, GermanyGoogle Scholar
  8. [8]
    Armbrust C, Proetzsch M, Schäfer B H, Berns K (2010) A behaviour-based integration of fully autonomous, semi-autonomous and tele-operated control modes for an off-road ro-bot. In: Proceedings of the 2nd IFAC Symposium on Telematics Applications. IFAC, Politehnica University, Timisoara, RomaniaGoogle Scholar
  9. [9]
    Armbrust C, Schmidt D, Berns K (2012) Generating behaviour networks from finite-state machines. In: Proceedings of the German Conference on Robotics (Robotik)Google Scholar
  10. [10]
    Barrett C, Stump A, Tinelli C (2010) The satisfiability modulo theories library (smt-lib). www.SMT-LIB.org. Accessed 16 Sep 2014Google Scholar
  11. [11]
    Behrmann G, David A, Larsen K G (2006) A tutorial on uppaal 4.0Google Scholar
  12. [12]
    Brooks R (1986) A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation (RA) 2(1):14–23Google Scholar
  13. [13]
    Clarke E M, Emerson E A (1982) Design and synthesis of synchronization skeletons us-ing branching time temporal logic. In: Kozen D (ed) Logics of Programs - Workshop. Lecture Notes in Computer Science (LNCS), vol 13. Springer, Berlin, Heidelberg, pp 52–71Google Scholar
  14. [14]
    Deimel R, Brock O (2013) A compliant hand based on a novel pneumatic actuator. In: Proceedings of the IEEE International Conference on Robotics and Automation 2013 (ICRA 2013). pp 2039–2045Google Scholar
  15. [15]
    Floyd R W (1967) Assigning meanings to programs. In: Schwartz J T (ed) Mathematical Aspects of Computer Science. Proceedings of Symposia in Applied Mathematics, vol 19. American Mathematical Society, Providence, Rhode Island, USA, pp 19–32Google Scholar
  16. [16]
    Hoare C A R (1969) An axiomatic basis for computer programming. Communications of the ACM 12(10):576–583CrossRefzbMATHGoogle Scholar
  17. [17]
    Kiekbusch L, Armbrust C, Berns K (2014) Formal verification of behaviour networks in-cluding hardware failures. In: Proceedings of the 13th International Conference on Intel-ligent Autonomous Systems (IAS-13). Padova, ItalyGoogle Scholar
  18. [18]
    Luksch T (2010) Human-like Control of Dynamically Walking Bipedal Robots. Disserta-tion, University of Kaiserslautern, Verlag Dr. Hut, ISBN: 978-3-86853-607–2Google Scholar
  19. [19]
    Marchese A D, Onal C D, Rus D (2014) Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics 1(1):75–87CrossRefGoogle Scholar
  20. [20]
    Matarić M J, Michaud F (2008) Behaviour-based systems. In: Siciliano B, Khatib O (ed) Springer Handbook of Robotics. Springer Berlin Heidelberg, pp. 891–910Google Scholar
  21. [21]
    Park Y L, Chen B R, Wood R J (2011) Soft artificial skin with multi-modal sensing ca-pability using embedded liquid conductors. In: Proceedings of the IEEE Sensors 2011 Conference. Limerick, Ireland, pp 81–84Google Scholar
  22. [22]
    Proetzsch M (2010) Development Process for Complex Behavior-Based Robot Control Systems. Dissertation, University of Kaiserslautern, Verlag Dr. Hut, ISBN: 978-3-86853-626–3Google Scholar
  23. [23]
    Queille J P, Sifakis J (1982) Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini M, Montanari U (ed) International Symposium on Pro-gramming - Proceedings of the 5th Colloquium. Lecture Notes in Computer Science (LNCS), vol 137. Springer-Verlag, London, UK, pp 337–351Google Scholar
  24. [24]
    Ropertz T, Berns K (2014) Verification of behavior-based networks - using satisfiability modulo theories. In: Proceedings for the joint conference of ISR 2014 and ROBOTIK 2014. VDE VERLAG GMBH, pp 669–674Google Scholar
  25. [25]
    Wilhelm L, Proetzsch M, Berns K (2009) Oscillation analysis in behavior-based robot ar-chitectures. In: Dillmann R, Beyerer J, Stiller C, Zöllner J, Gindele T (ed) Autonome Mobile Systeme. Informatik aktuell, Springer, pp 121–128Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christopher Armbrust
    • 1
  • Lisa Kiekbusch
    • 1
  • Thorsten Ropertz
    • 1
  • Karsten Berns
    • 1
  1. 1.University of KaiserslauternKaiserslauternGermany

Personalised recommendations