Perception of Deformable Objects and Compliant Manipulation for Service Robots

  • Jörg Stückler
  • Sven Behnke
Conference paper


We identified softness in robot control as well as robot perception as key enabling technologies for future service robots. Compliance in motion control compensates for small errors in model acquisition and estimation and enables safe physical interaction with humans. The perception of shape similarities and deformations allows a robot to adapt its skills to the object at hand, given a description of the skill that generalizes between different objects. In this chapter, we present our approaches to compliant control and object manipulation skill transfer for service robots. We report on evaluation results and public demonstrations of our approaches.


Humanoid Robot Service Robot Skill Transfer Deformable Object Deformable Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Christensen HI, Hüttenrauch H, Severinson-Eklundh K (2000) Human-Robot Interaction in Service Robotics. In: Proc of RobotikGoogle Scholar
  2. [2]
    Khatib O, Yokoi K, Chang K, Ruspini D, Holmberg R, Casal A, Baader A (1996) Force strategies for cooperative tasks in multiple mobile manipulation systems. In: Proc of ISRR, 333–342Google Scholar
  3. [3]
    Khatib O (1988) Object manipulation in a multi-effector robot system. In: Proc. of Inter-national Symposium of Robotic Research (ISRR), 137–144Google Scholar
  4. [4]
    Liegeois A (1977) Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms. IEEE Transactions on Systems, Man and Cybernetics 7(12):868–871CrossRefzbMATHGoogle Scholar
  5. [5]
    Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans on PAMI 32(12):2262–2275CrossRefGoogle Scholar
  6. [6]
    Nakanishi J, Cory R, Mistry M, Peters J, Schaal S (2008) Operational Space Control: A Theoretical and Empirical Comparison. Int Journal of Robotics Research 27(6):737–757CrossRefGoogle Scholar
  7. [7]
    Oudeyer P-Y, Ly O, Rouanet P (2011) Exploring robust, intuitive and emergent physical human-robot interaction with the humanoid robot Acroban. In: Proc of the IEEE-RAS Int Conf on Humanoid RobotsGoogle Scholar
  8. [8]
    Schulman J, Gupta A, Venkatesan S, Tayson-Frederick M, Abbeel P (2013) A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario. In: Proc of IEEE/RSJ Int Conf on Intelligent Robots and Systems (IROS)Google Scholar
  9. [9]
    Schulman J, Ho J, Lee C, Abbeel P (2013) Learning from demonstrations through the use of non-rigid registration. In: Proc of the 16th Int Symposium on Robotics Research (ISRR)Google Scholar
  10. [10]
    Stückler J, Behnke S (2012) Compliant Task-Space Control with Back-Drivable Servo Actuators. In: RoboCup 2011, LNCS 7416, 78–89Google Scholar
  11. [11]
    Stückler J, Behnke S (2014) Efficient Deformable Registration of Multi-Resolution Surfel Maps for Object Manipulation Skill Transfer. In: Proc of IEEE Int Conf on Robot-ics and Automation (ICRA)Google Scholar
  12. [12]
    Stückler J, Droeschel D, Gräve K, Holz D, Schreiber M, Topalidou-Kyniazopoulou A, Schwarz M, Behnke S (2014) Increasing Flexibility of Mobile Manipulation and Intuitive Human-Robot Interaction in RoboCup@Home. In: RoboCup 2013, LNCS 8371, 135–146Google Scholar
  13. [13]
    Stückler J, Behnke S (2014) Multi-resolution surfel maps for efficient dense 3D modeling and tracking. Journal of Visual Communication and Image Representation 25(1):137–147CrossRefGoogle Scholar
  14. [14]
    Stückler J, Badami I, Droeschel D, Gräve K, Holz D, McElhone M, Nieuwenhuisen M, Schreiber M, Schwarz M, Behnke S (2013) NimbRo@Home: Winning Team of the Ro-boCup-@Home Competition 2012. In: RoboCup 2012, LNCS 7500, 94–105Google Scholar
  15. [15]
    Stückler J, Holz D, Behnke S (2012) RoboCup@Home: Demonstrating Everyday Ma-nipulation Skills in RoboCup@Home. IEEE Robotics & Automation Magazine 19(2):34–42CrossRefGoogle Scholar
  16. [16]
    Williams D, Khatib O (1993) The virtual linkage: A model for internal forces in multi-grasp manipulation. In: Proc of the IEEE Int. Conf. on Robotics and Automation (ICRA)Google Scholar
  17. [17]
    Yokoyama K, Handa H, Isozumi T, Fukase Y, Kaneko K, Kanehiro F, Kawai Y, Tomita F, Hirukawa H (2003) Cooperative works by a human and a humanoid robot. In: Proc of IEEE Int Conf on Robotics and Automation (ICRA), 2985–2991Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jörg Stückler
    • 1
  • Sven Behnke
    • 1
  1. 1.Computer Science Institute VI, Autonomous Intelligent SystemsUniversity of BonnBonnGermany

Personalised recommendations