Skip to main content

Musculoskeletal Robots and Wearable Devices on the Basis of Cable-driven Actuators

  • Conference paper
  • First Online:
Soft Robotics

Abstract

Cable-driven actuators are a promising alternative for future kinematic designs, particularly when the combination of lightweight, high strength, compact designs and dynamic motions are required. Powered exoskeletons or wearable robots are typical candidates of these novel actuators as has been demonstrated by previous research. This chapter focusses on current work in cable-driven actuators, introduces the Myorobotics toolkit for supporting the engineer to build up prototypes from cable-actuates modules and gives an outlook to using cable-driven actuation for advanced wearable robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dollar AM, Herr H (2008) Lower Extremity Exoskeletons and Active Orthoses: Chal-lenges and State-of-the-Art. IEEE Transactions on Robotics, 24(1):144–158

    Article  Google Scholar 

  2. Holland O, Rob K (2006) The Anthropomimetic Principle. http://www.mindtrans.narod.ru/pdfs/cronos.pdf. Accessed 20 July 2014

  3. Alexander RM (1990) Three Uses for Springs in Legged Locomotion. Int J Robot Res 9(2):53–61

    Article  Google Scholar 

  4. Festo AG & Co. KG. Airic’s_arm – Robot arm with Fluidic Muscles. http://www.festo.com/net/SupportPortal/Files/42058/Airics_arm_en.pdf. Accessed 20 July 2014

  5. Seyfarth A, Iida F, Tausch R, Stelzer M, von Stryk O, Karguth A (2009) Towards Biped-al Jogging as a Natural Result of Optimizing Walking Speed for Passively Compliant Three-Segmented Legs. Int J Robot Res 28:257–265

    Article  Google Scholar 

  6. Radkhah K, Maufroy C, Maus M, Scholz D, Seyfarth A, von Stryk O (2011) Concept and design of the BioBiped1 robot for human-like walking and running. International Journal of Humanoid Robotics 8(3):439–458

    Article  Google Scholar 

  7. Hosoda K, Sakaguchi Y, Takamaya H (2010) Pneumatic-driven jumping robot with an-thropomorphic muscular skeleton structure. Automomous Robots 28(3):307–316

    Article  Google Scholar 

  8. Mizuuchi I, Nakanishi Y, Sodeyama Y, Namiki Y, Nishino T, Muramatsu N, Inaba M (2007) An advanced musculoskeletal humanoid Kojiro. Proceedings of the 2007 IEEE-RAS International Conference on Humanoid Robots (Humanoids 2007), 294-299. 29 Nov. 2007-1. Dec. 2007, Pittsburgh, PA, USA

    Google Scholar 

  9. Mizuuchi I, Yoshikai T, Sodeyama Y, Nakanishi Y, Miyadera A, Yamamoto T, Inaba M (2006) Development of musculoskeletal humanoid Kotaro. Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), 82-87. Orlando, FL, USA

    Google Scholar 

  10. Jäntsch M, Wittmeier S, Knoll A (2010) Distributed Control for an Anthropomimetic Robot. Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5466-5471. 18-22 Oct. 2010, Taipei, Taiwan

    Google Scholar 

  11. Marques HG, Newcombe R, Holland O (2007) Controlling an Anthropomimetic Robot: A Preliminary Investigation. In: Almeida e Costa F Rocha LM Costa E Harvey I Coutinho A (ed) Advances in Artificial Life: Lecture Notes in Computer Science, Spring-er Berlin Heidelberg

    Google Scholar 

  12. Grzesiak A, Becker R, Verl A (2011). The Bionic Handling Assistant: a success story of additive manufacturing. Assembly Automation 31(4):329–333

    Article  Google Scholar 

  13. Rost A, Verl A (2010) The QuadHelix-Drive - An improved rope actuator for robotic ap-plications. Proceedings of the 2010 IEEE International Conference on Robotics and Au-tomation (ICRA), 3254-3259. 3-7 May 2010, Anchorage, AK, USA

    Google Scholar 

  14. Pott A, Mütherich H, Kraus W, Schmidt V, Miermeister P, Dietz T, Verl A (2013). Ca-ble-driven parallel robots for industrial applications: The IPAnema system family. Pro-ceedings of the 2013 International Symposium on Robotics (ISR). October 24-26, 2013, Seoul, Korea.

    Google Scholar 

  15. Myorobotics: A framework for musculoskeletal robot development. http://www.myorobotics.eu/. Accessed 20 July 2014

  16. Marques HG, Maufroy C, Lenz A, Dalamagkidis K, Culha U, Siee M, Bremner P (2013). MYOROBOTICS: A modular toolkit for legged locomotion research using musculoskel-etal designs. Proceedings of the 6th International Symposium on Adaptive Motion of An-imals and Machines (AMAM 2013). March 11-14, Darmstadt, Germany

    Google Scholar 

  17. Pratt G, Williamson M (1995) Series elastic actuators. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 'Human Robot In-teraction and Cooperative Robots' (Volume: 1), 399-406. Pittsburgh, PA

    Google Scholar 

  18. Muramatsu Y, Umehara H, Kobayashi H (2013) Improvement and Quantitative Perfor-mance Estimation of the Back Support Muscle. Proceedings of the 35th Annual Interna-tional Conference of Engineering in Medicine and Biology Society IEEE (EMBC), 2844-2849. 3-7 July 2013, Osaka, Japan

    Google Scholar 

  19. Asbeck A, Dyer R, Larusson A, Walsh C (2013). Biologically-inspired Soft Exosuit. Pro-ceedings of the 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), 1-8. 24-26 June 2013, Seattle

    Google Scholar 

  20. Weiss TC (2014) StrongArm Technologies - ErgoSkeleton and Worker Safety. http://www.disabled-world.com/assistivedevices/ergoskeleton.php. Accessed 20 July 2014

  21. Mao Y, Agrawal SK (2012) Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation. IEEE Transactions on Robotics 28(4):922–931

    Article  Google Scholar 

  22. Hebehilfe. http://www.mtidw.de/ueberblick-bekanntmachungen/mit-60-mitten-im-arbeitsleben/hebehilfe-entwicklung-und-verifikation-einer-koerpergetragenen-hebehilfe-zur-unterstuetzung-von-arbeitnehmern . Accessed 20 July 2014

  23. Fraunhofer-Leitprojekt »E³-Produktion«. http://www.fraunhofer.de/de/fraunhofer-forschungsthemen/fraunhofer-leitprojekte/e3-produktion.html. Accessed 20 July 2014

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haegele, M., Maufroy, C., Kraus, W., Siee, M., Breuninger, J. (2015). Musculoskeletal Robots and Wearable Devices on the Basis of Cable-driven Actuators. In: Verl, A., Albu-Schäffer, A., Brock, O., Raatz, A. (eds) Soft Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44506-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44506-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44505-1

  • Online ISBN: 978-3-662-44506-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics