Musculoskeletal Robots and Wearable Devices on the Basis of Cable-driven Actuators

  • Martin Haegele
  • Christophe Maufroy
  • Werner Kraus
  • Maik Siee
  • Jannis Breuninger
Conference paper


Cable-driven actuators are a promising alternative for future kinematic designs, particularly when the combination of lightweight, high strength, compact designs and dynamic motions are required. Powered exoskeletons or wearable robots are typical candidates of these novel actuators as has been demonstrated by previous research. This chapter focusses on current work in cable-driven actuators, introduces the Myorobotics toolkit for supporting the engineer to build up prototypes from cable-actuates modules and gives an outlook to using cable-driven actuation for advanced wearable robots.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dollar AM, Herr H (2008) Lower Extremity Exoskeletons and Active Orthoses: Chal-lenges and State-of-the-Art. IEEE Transactions on Robotics, 24(1):144–158CrossRefGoogle Scholar
  2. [2]
    Holland O, Rob K (2006) The Anthropomimetic Principle. Accessed 20 July 2014
  3. [3]
    Alexander RM (1990) Three Uses for Springs in Legged Locomotion. Int J Robot Res 9(2):53–61CrossRefGoogle Scholar
  4. [4]
    Festo AG & Co. KG. Airic’s_arm – Robot arm with Fluidic Muscles. Accessed 20 July 2014
  5. [5]
    Seyfarth A, Iida F, Tausch R, Stelzer M, von Stryk O, Karguth A (2009) Towards Biped-al Jogging as a Natural Result of Optimizing Walking Speed for Passively Compliant Three-Segmented Legs. Int J Robot Res 28:257–265CrossRefGoogle Scholar
  6. [6]
    Radkhah K, Maufroy C, Maus M, Scholz D, Seyfarth A, von Stryk O (2011) Concept and design of the BioBiped1 robot for human-like walking and running. International Journal of Humanoid Robotics 8(3):439–458CrossRefGoogle Scholar
  7. [7]
    Hosoda K, Sakaguchi Y, Takamaya H (2010) Pneumatic-driven jumping robot with an-thropomorphic muscular skeleton structure. Automomous Robots 28(3):307–316CrossRefGoogle Scholar
  8. [8]
    Mizuuchi I, Nakanishi Y, Sodeyama Y, Namiki Y, Nishino T, Muramatsu N, Inaba M (2007) An advanced musculoskeletal humanoid Kojiro. Proceedings of the 2007 IEEE-RAS International Conference on Humanoid Robots (Humanoids 2007), 294-299. 29 Nov. 2007-1. Dec. 2007, Pittsburgh, PA, USAGoogle Scholar
  9. [9]
    Mizuuchi I, Yoshikai T, Sodeyama Y, Nakanishi Y, Miyadera A, Yamamoto T, Inaba M (2006) Development of musculoskeletal humanoid Kotaro. Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), 82-87. Orlando, FL, USAGoogle Scholar
  10. [10]
    Jäntsch M, Wittmeier S, Knoll A (2010) Distributed Control for an Anthropomimetic Robot. Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5466-5471. 18-22 Oct. 2010, Taipei, TaiwanGoogle Scholar
  11. [11]
    Marques HG, Newcombe R, Holland O (2007) Controlling an Anthropomimetic Robot: A Preliminary Investigation. In: Almeida e Costa F Rocha LM Costa E Harvey I Coutinho A (ed) Advances in Artificial Life: Lecture Notes in Computer Science, Spring-er Berlin HeidelbergGoogle Scholar
  12. [12]
    Grzesiak A, Becker R, Verl A (2011). The Bionic Handling Assistant: a success story of additive manufacturing. Assembly Automation 31(4):329–333CrossRefGoogle Scholar
  13. [13]
    Rost A, Verl A (2010) The QuadHelix-Drive - An improved rope actuator for robotic ap-plications. Proceedings of the 2010 IEEE International Conference on Robotics and Au-tomation (ICRA), 3254-3259. 3-7 May 2010, Anchorage, AK, USAGoogle Scholar
  14. [14]
    Pott A, Mütherich H, Kraus W, Schmidt V, Miermeister P, Dietz T, Verl A (2013). Ca-ble-driven parallel robots for industrial applications: The IPAnema system family. Pro-ceedings of the 2013 International Symposium on Robotics (ISR). October 24-26, 2013, Seoul, Korea.Google Scholar
  15. [15]
    Myorobotics: A framework for musculoskeletal robot development. Accessed 20 July 2014
  16. [16]
    Marques HG, Maufroy C, Lenz A, Dalamagkidis K, Culha U, Siee M, Bremner P (2013). MYOROBOTICS: A modular toolkit for legged locomotion research using musculoskel-etal designs. Proceedings of the 6th International Symposium on Adaptive Motion of An-imals and Machines (AMAM 2013). March 11-14, Darmstadt, GermanyGoogle Scholar
  17. [17]
    Pratt G, Williamson M (1995) Series elastic actuators. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 'Human Robot In-teraction and Cooperative Robots' (Volume: 1), 399-406. Pittsburgh, PAGoogle Scholar
  18. [18]
    Muramatsu Y, Umehara H, Kobayashi H (2013) Improvement and Quantitative Perfor-mance Estimation of the Back Support Muscle. Proceedings of the 35th Annual Interna-tional Conference of Engineering in Medicine and Biology Society IEEE (EMBC), 2844-2849. 3-7 July 2013, Osaka, JapanGoogle Scholar
  19. [19]
    Asbeck A, Dyer R, Larusson A, Walsh C (2013). Biologically-inspired Soft Exosuit. Pro-ceedings of the 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), 1-8. 24-26 June 2013, SeattleGoogle Scholar
  20. [20]
    Weiss TC (2014) StrongArm Technologies - ErgoSkeleton and Worker Safety. Accessed 20 July 2014
  21. [21]
    Mao Y, Agrawal SK (2012) Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation. IEEE Transactions on Robotics 28(4):922–931CrossRefGoogle Scholar
  22. [22]
  23. [23]
    Fraunhofer-Leitprojekt »E³-Produktion«. Accessed 20 July 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Martin Haegele
    • 1
  • Christophe Maufroy
    • 1
  • Werner Kraus
    • 1
  • Maik Siee
    • 1
  • Jannis Breuninger
    • 1
  1. 1.Fraunhofer Institute of Manufacturing Engineering and Automation IPAStuttgartGermany

Personalised recommendations