New Concepts for Distributed Actuators and Their Control

  • Welf-Guntram Drossel
  • Holger Schlegel
  • Michael Walther
  • Philipp Zimmermann
  • André Bucht
Conference paper


Recently, decreasing costs for robots and control components have led to a broader acceptance of different kinds of robots. Hence, various fields of application start to flourish. As this is especially true for the field of service robotics it is typically implying an increasing physical human-machine-interaction. In this case a soft appearance yields major benefits, as it prevents injuries corresponding to an inherent safety of the system and, in theory, enables the robot to obtain virtually unlimited degrees of freedom. In this chapter the possibilities of the use of shape memory alloys for distributed actuators will be discussed by reference to application examples and implications for the control of such systems will be pointed out in detail.


Shape Memory Alloy Path Planning Dielectric Elastomer Shape Memory Alloy Wire Inherent Safety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Besselink PA (1996) Procedure for the calculation of the geometry of a resistance heated NiTi-actuator. In: Actuator Proceedings of the 5th International Conference on New Ac-tuators, pp 421–424Google Scholar
  2. [2]
    Bodson M (2002) Evaluation of optimization methods for control allocation. Journal of Guidance, Control, and Dynamics 25(4):703–711CrossRefGoogle Scholar
  3. [3]
    Cianchetti M, Follador M, Mazzolai B, Dario P, Laschi C (2012) Design and develop-ment of a soft robotic octopus arm exploiting embodied intelligence. In: IEEE Interna-tional Conference on Robotics and Automation (ICRA), pp 5271–5276, DOI 10.1109/ICRA.2012.6224696Google Scholar
  4. [4]
    Ghasemi A (2012) Specified motion and feedback control of engineering structures with distributed sensors and actuators. Dissertation, University of KentuckyGoogle Scholar
  5. [5]
    Hädrich J, Walther M, Schlegel H, Neugebauer R (2011) Sensordatenfusion zur Zustand-serfassung nachgiebiger Leichtbauarme. In: 21st International Scientific Conference, Mittweida, pp 45–49Google Scholar
  6. [6]
    Hädrich J, Walther M, Schlegel H, Neugebauer R (2011) Zustandserfassung für die Lage-regelung eines nachgiebigen Roboterarms. In: SPS/IPC/DRIVES, Nürnberg, pp 423–431Google Scholar
  7. [7]
    Härkegård O (2002) Dynamic control allocation using constrained quadratic program-ming. In: AIAA Guidance, Navigation, and Control Conference, Monterey, CaliforniaGoogle Scholar
  8. [8]
    Jung J (2009) Aufbau eines Greifmechanismus mit FG-Drahtaktoren. Diploma thesis, Technische Universität DresdenGoogle Scholar
  9. [9]
    Kohl M (2002) Entwicklung von Mikroaktoren aus Formgedchtnislegierungen, Wissen-schaftliche Berichte, vol 6718. Forschungszentrum KarlsruheGoogle Scholar
  10. [10]
    Lagoudas DC (2008) Shape Memory Alloys - Modeling and Engineering Applications. SpringerGoogle Scholar
  11. [11]
    Langbein S, Czechowicz A (2012) Adaptive resetting of SMA actuators. Journal of Intel-ligent Material Systems and Structures 23(2):127–134, DOI 10.1177/1045389�11431741CrossRefGoogle Scholar
  12. [12]
    Meier H, Czechowicz A, Dilthey S (2008) Regeln von FG-Legierungen mit Widerstands-rückkopplung: Sensorik-Arrays überflüssig. Mechatronik (11/12):24–27Google Scholar
  13. [13]
    Neugebauer R, Bucht A, Pagel K, Jung J (2010) Numerical simulation of the activation behavior of thermal shape memory alloys. In: Proceedings SPIE, vol 7645, pp 76,450J–76,450J–12, DOI 10.1117/12.847594Google Scholar
  14. [14]
    Neugebauer R, Hipp K, Hofmann S, Schlegel H (2011) Einsatz von Verfahren der Simu-lationsbasierten Optimierung zur Reglerparametrierung unter Berücksichtigung von defi-nierbaren Nebenbedingungen. In: Mechatronik, Dresden, pp 247–252Google Scholar
  15. [15]
    Neugebauer R, Walther M, Hädrich J, Schlegel H (2011) Zustandserfassung flexibler Leichtbauarme durch Multisensor Daten Integration. In: Fachtagung Mechatronik, Dres-den, pp 285–290Google Scholar
  16. [16]
    Neugebauer R, Hipp K, Hellmich A, Schlegel H (2012) Increased Performance of a Hy-brid Optimizer for Simulation Based Controller Parameterization. JAMRIS - Journal of Automation, Mobile Robotics & Intelligent Systems (1):42–45Google Scholar
  17. [17]
    Oelschlaeger L (2004) Numerische Modellierung des Aktivierungsverhaltens von Form-gedaechtnisaktoren am Beispiel eines Schrittantriebes. Dissertation, Ruhr-Universität BochumGoogle Scholar
  18. [18]
    Sangbae K, Hawkes E, Kyujin C, Joldaz M, Foleyz J, Wood R (2009) Micro artificial muscle fiber using NiTi spring for soft robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2228–2234, DOI 10.1109/IROS.2009.5354178Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Welf-Guntram Drossel
    • 1
  • Holger Schlegel
    • 1
  • Michael Walther
    • 1
  • Philipp Zimmermann
    • 1
  • André Bucht
    • 1
  1. 1.Fraunhofer Institute for Machine Tools and Forming Technology IWUChemnitzGermany

Personalised recommendations