Advertisement

Soft Robotics pp 255-264 | Cite as

Soft Robotics Research, Challenges, and Innovation Potential, Through Showcases

  • Cecilia Laschi
Conference paper

Abstract

Soft robotics, intended as the use of soft materials in robotics, is a young yet promising and growing research field. The need for soft robots emerged in robotics, for facing unstructured environments, and in artificial intelligence, too, for implementing the embodied intelligence, or morphological computation, paradigm, which attributes a stronger role to the bodyware and its interaction with the environment. Using soft materials for building robots poses new technological challenges: the technologies for actuating soft materials, for embedding sensors into soft robot parts, for controlling soft robots are among the main ones. Though still in its early stages of development, soft robotics is finding its way in a variety of applications, where safe contact is a main issue, in the biomedical field, as well as in exploration tasks and in the manufacturing industry. Literature in soft robotics is increasingly rich, though scattered in many disciplines. The soft robotics community is growing worldwide and initiatives are being taken, at international level, for consolidating this community and strengthening its potential for disruptive innovation.

Keywords

Shape Memory Alloy Soft Material Autonomous Underwater Vehicle Remotely Operate Vehicle IEEE Trans Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]Iida F, Laschi C (2011) Soft Robotics: Challenges and Perspectives. Procedia Computer Science, 7:99–102. doi:10.1016/j.procs.2011.12.030CrossRefGoogle Scholar
  2. [2]Siciliano B, Khatib O (2008) Handbook of Robotics. Springer, BerlinCrossRefzbMATHGoogle Scholar
  3. [3]Brooks RA (1991) New approaches to robotics. Science 253:1227–1232. doi: 10.2307/2879167CrossRefGoogle Scholar
  4. [4]Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318(5853):1088–1093. doi:10.1126/science.1145803Google Scholar
  5. [5]Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends in Biotechnology 31(5):287–294. doi:10.1016/j.tibtech.2013.03.002CrossRefGoogle Scholar
  6. [6]Pfeifer R, Bongard JC (2007) How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, CambridgeGoogle Scholar
  7. [7]Wells MJ (1976) Octopus: Physiology and Behaviour of an Advanced Invertebrate. John Wiley & Sons, New YorkGoogle Scholar
  8. [8]Laschi C, Cianchetti M (2014) Soft Robotics: New Perspectives for Robot Bodyware and Control. Front. Bioeng. Biotechnol 2(3). doi:10.3389/fbioe.2014.00003Google Scholar
  9. [9]Kier WM, Smith KK (1985) Tongues, tentacles and trunks: the biomechanics of movement in muscular-hydrostats. Zool J Linn Soc 83:307–324. doi:10.1111/j.1096-3642.1985.tb01178.xCrossRefGoogle Scholar
  10. [10]Kier WM, Stella MP (2007) The arrangement and function of octopus arm musculature and connective tissue. J. Morphol. 268:831–843CrossRefGoogle Scholar
  11. [11]Mazzolai B, Margheri L, Dario P, Laschi C (2013) Measurements of Octopus Arm Elongation Movement: Evidence of Differences by Animal Sex and Size. J Exp Mar Biol Ecol 447:160–164. doi:10.1016/j.jembe.2013.02.025CrossRefGoogle Scholar
  12. [12]Margheri L, Mazzolai B, Dario P, Laschi C (2012a) A bioengineering approach for in vivo measurements of the octopus arms. J Shellfish Res 30(3):1012–1012. doi:10.2983/035.030.0342Google Scholar
  13. [13]Margheri L, Ponte G, Mazzolai B, Laschi C, Fiorito G (2011) Non-invasive study of Octopus vulgaris arm morphology using ultrasound. J Exp Biol 214:3727–3731.doi:10.1242/jeb.057323CrossRefGoogle Scholar
  14. [14]Giorgio-Serchi F, Arienti A, Laschi C (2013) Biomimetic Vortex Propulsion: Toward the New Paradigm of Soft Unmanned Underwater Vehicles. IEEE/ASME Trans. Mechatronics 18(2):484–493. doi:10.1109/TMECH.2012.2220978CrossRefGoogle Scholar
  15. [15]Calisti M, Giorelli M, Levy G, Mazzolai B, Hochner B, Laschi C, Dario P (2011) An octopus- bioinspired solution to movement and manipulation for soft robots. Bioinspir Biomim 6:036002. doi:10.1088/1748-3182/6/3/036002CrossRefGoogle Scholar
  16. [16]Margheri L, Laschi C, Mazzolai B (2012b) Soft robotic arm inspired by the octopus. I. From biological functions to artificial requirements. Bioinspir Biomim 7(2):025004. doi:10.1088/1748-3182/7/2/025004CrossRefGoogle Scholar
  17. [17]Mazzolai B, Margheri L, Cianchetti M, Dario P, Laschi C (2012) Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir. Biomim. 7(2):025005. doi:10.1088/1748-3182/7/2/025005CrossRefGoogle Scholar
  18. [18]Bar-Cohen Y (2004) Electroactive Polymer (EAP) Actuators as Artificial Muscles. SPIE Press, BellinghamGoogle Scholar
  19. [19]Carpi F, Smela E (2009) Biomedical applications of electroactive polymer actuators. Wiley, New YorkCrossRefGoogle Scholar
  20. [20]Cianchetti M, Mattoli V, Mazzolai B, Laschi C, Dario P A new design methodology of electrostrictive actuators for bio-inspired robotics. Sensor Actuat B-Chem 142(1):288–297. doi:10.1016/j.snb.2009.08.039Google Scholar
  21. [21]Pons JL (2005) Emerging Actuator Technologies: A Micromechatronic Approach. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  22. [22]Cianchetti M (2013) Fundamentals on the Use of Shape Memory Alloys in Soft Robotics, in Interdisciplinary Mechatronics: Engineering Science and Research Development. In: Habib MK and Paulo Davim J (ed) Interdisciplinary Mechatronics: Engineering Science and Research Development. Wiley-ISTE, Hoboken.Google Scholar
  23. [23]Lin HT, Leisk GG, Trimmer B (2011) GoQBot: a caterpillar inspired soft-bodied rolling robot. Bioinspir. Biomim. 6:026007. doi:10.1088/1748-3182/6/2/026007Google Scholar
  24. [24]Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P (2012) Soft Robot Arm Inspired by the Octopus. Adv Robotics 26(7):709–727. doi:10.1163/156855312X626343CrossRefGoogle Scholar
  25. [25]Chou C-P, Hannaford B (1996) Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans Robot Autom 12:90–102. doi:10.1109/70.481753CrossRefGoogle Scholar
  26. [26]Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA, Mazzeo AD, Chen X, Wang M, Whitesides GM (2011) Multigait soft robot. PNAS 108(51):20400–20403. doi:10.1073/pnas.1116564108CrossRefGoogle Scholar
  27. [27]Camarillo DB, Carlson CR, Salisbury JK (2009) Configuration tracking for continuum manipulators with coupled tendon drive. IEEE Trans Robot 25(4):798–808. doi:10.1109/TRO.2009.2022426CrossRefGoogle Scholar
  28. [28]Jones BA, Gray RL, Turlapati K (2007) Three dimensional statics for continuum robotics. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 11–15.Google Scholar
  29. [29]Boyer F, Porez M, Khalil W (2006) Macro-Continuous Computed Torque Algorithm for a Three-Dimensional Eel-Like Robot. IEEE Trans Robot 22:763–775. doi:10.1109/TRO.2006.875492CrossRefGoogle Scholar
  30. [30]Renda F, Cianchetti M, Giorelli M, Arienti A, Laschi C (2012) A 3D Steady State Model of a Tendon-Driven Continuum Soft Manipulator Inspired by Octopus Arm. Bioinspir. Biomim. 7:025006. doi:10.1088/1748-3182/7/2/025006CrossRefGoogle Scholar
  31. [31]Chirikjian GS, Burdick JW (1994) A modal approach to hyper-redundant manipulator kinematics. IEEE Trans Robot Autom 10(3):343–354. doi:10.1109/70.294209CrossRefGoogle Scholar
  32. [32]Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C (2012) A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. IEEE Int. Conf. on Robotics and Automation 3819–3824.Google Scholar
  33. [33]Giorelli M, Renda F, Ferri G, Laschi C (2013) A Feed-Forward Neural Network Learning the Inverse Kinetics of a Soft Cable-Driven Manipulator Moving in Three-Dimensional Space. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 5033–5039.Google Scholar
  34. [34]Cianchetti M, Ranzani T, Gerboni G, Nanayakkara T, Althoefer K, Dasgupta P, Menciassi A (2014) Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robotics 1(2):122–131. doi:10.1089/soro.2014.0001CrossRefGoogle Scholar
  35. [35]Arienti A, Calisti M, Giorgio-Serchi F, Laschi C (2013) PoseiDRONE: design of a softbodied ROV with crawling, swimming and manipulation ability. MTS/IEEE OCEANSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cecilia Laschi
    • 1
  1. 1.The BioRobotics InstituteScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations