Advertisement

Soft Robotics pp 231-254 | Cite as

Soft Robotics with Variable Stiffness Actuators: Tough Robots for Soft Human Robot Interaction

  • Sebastian Wolf
  • Thomas Bahls
  • Maxime Chalon
  • Werner Friedl
  • Markus Grebenstein
  • Hannes Höppner
  • Markus Kühne
  • Dominic Lakatos
  • Nico Mansfeld
  • Mehmet Can Özparpucu
  • Florian Petit
  • Jens Reinecke
  • Roman Weitschat
  • Alin Albu-Schäffer
Conference paper

Abstract

Robots that are not only robust, dynamic, and gentle in the human robot interaction, but are also able to perform precise and repeatable movements, need accurate dynamics modeling and a high-performance closed-loop control. As a technological basis we propose robots with intrinsically compliant joints, a stiff link structure, and a soft shell. The flexible joints are driven by Variable Stiffness Actuators (VSA) with a mechanical spring coupling between the motor and the actuator output and the ability to change the mechanical stiffness of the spring coupling. Several model based and model free control approaches have been developed for this technology, e.g. Cartesian stiffness control, optimal control, reactions, reflexes, and cyclic motion control.

Keywords

Joint Torque Intelligent Robot Elastic Element Nonlinear Spring Variable Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]Vanderborght B, Albu-Schäffer A, Bicchi A, Burdet E, Caldwell D, Carloni R, Catalano M, Eiberger O, Friedl W, Ganesh G, Garabini M, Grebenstein M, Grioli G, Haddadin S, Höppner H, Jafari A, Laffranchi M, Lefeber D, Petit F, Stramigioli S, Tsagarakis N, Damme MV, Ham RV, Visser L, Wolf S (2013) Variable impedance actuators: A review. Robotics and Autonomous Systems 61(12):1601–1614, DOI http://dx.doi.org/10.1016/j.robot.2013.06.009
  2. [2]Grebenstein M, Albu-Schäffer A, Bahls T, Chalon M, Eiberger O, Friedl W, Gruber R, Haddadin S, Hagn U, Haslinger R, Höppner H, Jörg S, Nickl M, Nothhelfer A, Petit F, Reill J, Seitz N, Wimböck T, Wolf S, Wüsthoff T, Hirzinger G (2011) The DLR H and Arm System. In: IEEE International Other on Robotics and Automation (ICRA), pp 3175–3182, DOI 10.1109/ ICRA.2011.5980371Google Scholar
  3. [3]Wolf S, Hirzinger G (2008) A new variable stiffness design: Matching requirements of the next robot generation. In: Robotics and Automation, 2008. ICRA 2008. IEEE Interna tional Other on, Pasadena, CA, USA, pp 1741–1746, DOI 10.1109/ROBOT.2008.4543452Google Scholar
  4. [4]Wolf S, Eiberger O, Hirzinger G (2011) The DLR FSJ: Energy based design of a variable stiffness joint. In: Robotics and Automation (ICRA), 2011 IEEE International Other on, pp 5082–5089, DOI 10.1109/ICRA.2011.5980303Google Scholar
  5. [5]Friedl W, Chalon M, Reinecke J, Grebenstein M (2011) FAS A flexible antagonistic spring element for a high performance over. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Other on, pp 1366–1372, DOI 10.1109/IROS.2011.6094569Google Scholar
  6. [6]Petit F, Albu-Schäffer A (2011) State feedback damping control for a multi dof variable stiffness robot arm. In: IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE, pp 5561–5567Google Scholar
  7. [7]Petit F, Ott C, Albu-Schäffer A (2014) A model-free approach to vibration suppression for intrinsically elastic robots. In: IEEE Int. Conf. on Robotics and Automation (ICRA), IEEEGoogle Scholar
  8. [8]Cui L, Maas H, Perreault EJ, Sandercock TG (2009) In situ estimation of tendon material properties: Differences between muscles of the feline hindlimb. Journal of Biomechanics 42(6):679–685, DOI http://dx.doi.org/10.1016/j. jbiomech.2009.01.022Google Scholar
  9. [9]Friedl W, Höppner H, Petit F, Hirzinger G (2011) Wrist and forearm rotation of the DLR H and Arm System: Mechanical design, shape analysis and experimental validation. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Other on, pp 1836–1842, DOI 10.1109/IROS. 2011.6094616Google Scholar
  10. [10]Petit F, Chalon M, Friedl W, Grebenstein M, Albu-Schäffer A, Hirzinger G (2010) Bidirectional antagonistic variable stiffness actuation: Analysis, design amp; implementation. In: Robotics and Automation (ICRA), 2010 IEEE International Other, pp 4189–4196, DOI 10.1109/ROBOT.2010.5509267Google Scholar
  11. [11]Petit F, Friedl W, Höppner H, Grebenstein M (2014) Analysis and synthesis of the bidirectional antagonistic variable stiffness mechanism. Mechatronics, IEEE/ASME Transactions on PP(99):1–12, DOI 10.1109/TMECH.2014. 2321428Google Scholar
  12. [12]Jörg S, Nickl M, Nothhelfer A, Bahls T, Hirzinger G (2011) The computing and communication architecture of the DLR hand arm system. In: Proceedings IEEE/RSJ International Other on Intelligent Robots and Systems, pp 1055–1062Google Scholar
  13. [13]Nickl M, Jörg S, Bahls T, Nothhelfer A, Strasser S (2011) Spacewire, a backbone for humanoid robotic systems. In: Proceedings of the 4th International SpaceWire Other, pp 356–359Google Scholar
  14. [14]European Cooperation for Space Standardization (ECSS) (2003) ECSS E-50-12A SpaceWire - Links, nodes routers and networks. http://spacewire.eas.intGoogle Scholar
  15. [15]IC Haus (2007) BiSS C Interface Protocol (C-Mode). http://www.ichaus.com, c1 ednGoogle Scholar
  16. [16]Grebenstein M (2014) Approaching Human Performance: The Functionality-Driven Awiwi Robot H and (Springer Tracts in Advanced Robotics). Springer, Berlin; Heidelberg; New YorkGoogle Scholar
  17. [17]Grebenstein M, Chalon M, Friedl W, Haddadin S, Wimböck T, Hirzinger G, Siegwart R (2012) The hand of the DLR H and Arm System: Designed for interaction. IJRR 31(13):1531–1555Google Scholar
  18. [18]Gray H (1999) Anatomy, descriptive and surgical. Courage Books, Philadelphia [19] Grebenstein M, Chalon M, Hirzinger G, Siegwart R (2010) A method for hand kinematics designers; 7 billion perfect hands. International Other on Advances in Bioscience and BioengineeringGoogle Scholar
  19. [20]Chalon M, Grebenstein M, Wimböck T, Hirzinger G (2010) The thumb: Guidelines for a robotic design. Intelligent Robots and Systems, (2010) IEEE/RSJ International Other on, pp 2153–2858Google Scholar
  20. [21]Grebenstein M, Chalon M, Hirzinger G, Siegwart R (2010) Antagonistically driven finger design for the anthropomorphic DLR H and Arm System. Humanoids Robots, IEEE/RAS International Other, pp 609–616Google Scholar
  21. [22]Grebenstein M, van der Smagt P (2008) Antagonism for a highly anthropomorphic handarm system. Advanced Robotics 1(22):39–55, DOI 10.1163/156855308X291836CrossRefGoogle Scholar
  22. [23]Albu-Schäffer A, Wolf S, Eiberger O, Haddadin S, Petit F, Chalon M (2010) Dynamic modelling and control of variable stiffness actuators. In: Robotics and Automation (ICRA), 2010 IEEE International Other on, pp 2155–2162, DOI 10.1109/ROBOT.2010.5509850Google Scholar
  23. [24]Jafari A, Tsagarakis N, Caldwell D (2013) A novel intrinsically energy efficient development of a novel actuator with adjustable stiffness (awas). IEEE Transactions on Mechatronics 18(1)Google Scholar
  24. [25]Albu-Schäffer A, Fischer M, Schreiber G, Schoeppe F, Hirzinger G (2004) Soft robotics: What cartesian stiffness can we obtain with passively compliant, uncoupled joints? In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp 3295–3301Google Scholar
  25. [26]Hogan N (1990) Mechanical impedance of single- and multi-articular systems. In: Winters J, Woo SY (eds) Multiple Muscle Systems, Springer New York, pp 149–164Google Scholar
  26. [27]Fantoni I, Lozano R, Spong MW (2000) Energy based control of the pendubot. IEEE Trans on Automatic Control 45(4):725–729CrossRefzbMATHMathSciNetGoogle Scholar
  27. [28]Petit F, Albu-Schäffer A (2011) Cartesian impedance control for a variable stiffness robot arm. In: Proc. of the IEEE/RSJ International Other on Intelligent Robots and Systems, pp 4180–4186Google Scholar
  28. [29]Palli G, Melchiorri C, Luca AD (2008) On the feedback linearization of robots with variable joint stiffness. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp 1753–1759Google Scholar
  29. [30]De Luca A Flacco F Bicchi A Schiavi R (2009) Nonlinear decoupled motion-stiffness control and collision detection/reaction for the vsa-ii variable stiffness device. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2009), IEEE, pp 5487–5494Google Scholar
  30. [31]Palli G, Melchiorri C (2011) Output-based control of robots with variable stiffness actuation. Journal of RoboticsGoogle Scholar
  31. [32]Tonietti G, Schiavi R, Bicchi A (2005) Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp 528–533Google Scholar
  32. [33]Albu-Schäffer A, Ott C, Petit F (2012) Energy shaping control for a class of underactuated euler-lagrange systems. In: IFAC Symposium on Robot ControlGoogle Scholar
  33. [34]Sardellitti I, Medrano-Cerda G, Tsagarakis NG, Jafari A, Caldwell DG (2012) A position and stiffness control strategy for variable stiffness actuators. In: Proc. IEEE Int. Conf. on Robotics and AutomationGoogle Scholar
  34. [35]Pontryagin L (1987) Mathematical Theory of Optimal Processes. Classics of Soviet Mathematics, Taylor & FrancisGoogle Scholar
  35. [36]Garabini M, Passaglia A, Belo FAW, Salaris P, Bicchi A (2011) Optimality principles in variable stiffness control: the VSA hammer. 2011 IEEE/RSJ International Other on Intelligent Robots and Systems (IROS2011), San Francisco, USA pp 3770–3775Google Scholar
  36. [37]Garabini M, Passaglia A, Belo F, Salaris P, Bicchi A (2012) Optimality principles in stiffness control: The VSA kick. In: Robotics and Automation (ICRA), 2012 IEEE International Other on, pp 3341–3346Google Scholar
  37. [38]Haddadin S, Weis M, Albu-Schäffer A, Wolf S (2011) Optimal control for maximizing link velocity of robotic variable stiffness joints. In: Proceedings IFAC 2011, World Congress pp 3175–3182Google Scholar
  38. [39]Haddadin S, Krieger K, Mansfeld N, Albu-Schäffer A (2012) On impact decoupling properties of elastic robots and time optimal velocity maximization on joint level. In: In telligent Robots and Systems (IROS), 2012 IEEE/RSJ International Other, pp 5089–5096, DOI 10.1109/IROS.2012.6385913Google Scholar
  39. [40]Haddadin S, Özparpucu M, Albu-Schäffer A (2012) Optimal control for maximizing potential energy in a variable stiffness joint. In: Decision and Control (CDC), 2012 IEEE 51st Annual Other, pp 1199–1206Google Scholar
  40. [41]Incaini R, Sestini L, Garabini M, Catalano MG, Grioli G, Bicchi A (2013) Optimal control and design guidelines for soft jumping robots: Series elastic actuation and parallel elastic actuation in comparison. In: IEEE International Other on Robotics and Automation (ICRA2013), pp 2477–2484Google Scholar
  41. [42]Özparpucu MC, Albu-Schäffer A (2014, Accepted) Optimal control strategies for maximizing the performance of variable stiiffness joints with nonlinear springs. In: Decision and Control (CDC), 2014 IEEE 53rd Annual Other onGoogle Scholar
  42. [43]Özparpucu MC, Haddadin S (2013) Optimal control for maximizing link velocity of visco-elastic joints. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Other on, pp 3035–3042Google Scholar
  43. [44]Özparpucu MC, Haddadin S (2014) Optimal control of elastic joints with variable damping. In: Control Other (ECC), 2014 European, pp 2526–2533Google Scholar
  44. [45]Özparpucu MC, Haddadin S, Albu-Schaffer A (2014, Accepted) Optimal control of variable stiffness actuators with nonlinear springs. In: Proceedings. IFAC 2014, World CongressGoogle Scholar
  45. [46]Garg D, Patterson MA, Hager WW, Rao AV, Benson DA, Huntington GT (2010) A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11):1843–1851CrossRefzbMATHMathSciNetGoogle Scholar
  46. [47]Braun D, Howard M, Vijayakumar S (2011) Exploiting variable stiffness in explosive movement tasks. In: Proceedings of Robotics: Science and Systems (RSS2011), Los Angeles, USA, pp 25–32Google Scholar
  47. [48]Haddadin S, Huber F, Albu-Schäffer A (2012) Optimal control for exploiting the natural dynamics of variable stiffness robots. In: Robotics and Automation (ICRA), 2012 IEEE International Other, pp 3347–3354, DOI 10.1109/ICRA.2012.6225190Google Scholar
  48. [49]Mettin U, Shiriaev A (2011) Ball-pitching challenge with an underactuated two-link robot arm. Proceedings IFAC 2011, World Congress pp 1–6Google Scholar
  49. [50]Weitschat R, Haddadin S, Huber F, Albu-Schäffer A (2013) Dynamic optimality in realtime: A learning framework for near-optimal robot motions. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Other on, pp 5636–5643Google Scholar
  50. [51]De Luca A Albu-Schäffer A Haddadin S Hirzinger G (2006) Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2006), IEEE, pp 1623–1630Google Scholar
  51. [52]Mansfeld N, Haddadin S (2014) Reaching desired states time-optimally from equilibrium and vice versa for visco-elastic joint robots with limited elastic deflection. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2014), IEEEGoogle Scholar
  52. [53]Wolf S, Albu-Schäffer A (2013) Towards a robust variable stiffness actuator. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Other on, IEEE/RSJ, Tokyo, Japan, pp 5410–5417Google Scholar
  53. [54]Lakatos D, Garofalo G, Petit F, Ott C, Albu-Schäffer A (2013) Modal limit cycle control for variable stiffness actuated robots. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp 4934–4941Google Scholar
  54. [55]Lakatos D, Görner M, Petit F, Dietrich A, Albu-Schäffer A (2013) A modally adaptive control for multi-contact cyclic motions in compliantly actuated robotic systems. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp 5388–5395Google Scholar
  55. [56]Lakatos D, Petit F, Albu-Schäffer A (2013) Nonlinear oscillations for cyclic movements in variable impedance actuated robotic arms. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp 508–515Google Scholar
  56. [57]Lakatos D, Garofalo G, Dietrich A, Albu-Schäffer A (2014) Jumping control for compliantly actuated multilegged robots. In: Proc. IEEE Int. Conf. on Robotics and AutomationGoogle Scholar
  57. [58]Lakatos D, Petit F, Albu-Schäffer A (2014) Nonlinear oscillations for cyclic movements in human and robotic arms. IEEE Transactions on Robotics pp 865–879Google Scholar
  58. [59]Lakatos D, Albu-Schäffer A (2014) Switching based limit cycle control for compliantly actuated second-order systems. Accepted for publication at the IFAC World CongressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Wolf
    • 1
  • Thomas Bahls
    • 1
  • Maxime Chalon
    • 1
  • Werner Friedl
    • 1
  • Markus Grebenstein
    • 1
  • Hannes Höppner
    • 1
  • Markus Kühne
    • 1
  • Dominic Lakatos
    • 1
  • Nico Mansfeld
    • 1
  • Mehmet Can Özparpucu
    • 1
  • Florian Petit
    • 1
  • Jens Reinecke
    • 1
  • Roman Weitschat
    • 1
  • Alin Albu-Schäffer
    • 1
  1. 1.German Aerospace Center (DLR)Technical University of MunichMunichGermany

Personalised recommendations