Soft Robotics pp 198-208 | Cite as

3D Printed Objects and Components Enabling Next Generation of True Soft Robotics

  • Andreas Fischer
  • Steve Rommel
  • Alexander Verl
Conference paper


Soft robotics in the content of true softness, with regards to components, parts, or the complete robot, are the next step in the development of tools for humans, especially when used in close proximity. Considering the fact that robots are a multilevel extension of the human body, and that their main purpose should be to help humans perform tasks, then focusing on the development of softmaterials, and product design options allowing for flexibility and softness by design is necessary, for the next development level of the tool “robot”. Using additive manufacturing in combination with new materials, design methods, and biomimicry / biomimetics is a key in that development, but also very challenging due to the multi-level complexity. An understanding of the real world tasks required to be performed, and abstracting this information into new applications and robotic designs in the combination mentioned above, is shown in the chapter, functioning as a basis and overview of the state-of-the-art.


Additive Manufacturing Selective Laser Melting Selective Laser Sinter Thermoplastic Material Print Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Breuninger et al (2013) Generative Fertigung mit Kunststoffen. Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  2. [2]
    Fahrer (2002) Ganzheitliche Optimierung des Laser-Sinterprozess. Herbert Utz Verlag GmbH, MünchenGoogle Scholar
  3. [3]
    Flemming et al (2012) Faserverbundbauweisen, Fasern und Matrices. Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  4. [4]
    Flemming et al (1996) Faserverbundbauweisen, Halbzeuge und Bauweisen. Springer-Verlag, Berlin-Heidelberg.Google Scholar
  5. [5]
    Flemming et al (1999) Faserverbundbauweisen, Fertigungsverfahren mit duroplastischer Matrix. Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  6. [6]
    Grießbach (2009) Praxis Rapid Technologien, Handbuch für Produktentwickler, Techniker, Kaufleute. Vonroth & Bode KG VerlagGoogle Scholar
  7. [7]
    Jäger et al (2010) Carbonfasern und ihre Verbund-werkstoffe: Herstellungsprozesse, Anwendungen und Marktentwicklung. Die Bibliothek der Technik, B and 326. Verlag Moderne IndustrieGoogle Scholar
  8. [8]
    Marguerre (1991) Bionik – von der Natur lernen. Siemens, BerlinGoogle Scholar
  9. [9]
    Lickfeld (1993) BIONIK – Patente der Natur. Pro-Futura-Verlag, MünchenGoogle Scholar
  10. [10]
    Nachtigall (1997) Vorbild Natur: Bionik-Design für funktionelles Gestalten. Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  11. [11]
    VDI-Richtlinie (2009) Generative Fertigungsverfahren – Rapid-Technologien (Rapid Prototyping) – Grundlagen, Begriffe, Qualitätskenngrößen, Liefervereinbarungen. VDI, DüsseldorfGoogle Scholar
  12. [12]
    Zäh (2006) Wirtschaftliche Fertigung mit Rapid-Technologien: Anwender-Leitfaden zur Auswahl geeigneter Verfahren. Carl Hanser Verlag, München-WienGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andreas Fischer
    • 1
  • Steve Rommel
    • 1
  • Alexander Verl
    • 1
  1. 1.Fraunhofer Institute for Manufacturing Engineering and Automation IPAStuttgartGermany

Personalised recommendations