Skip to main content

Nanostructured Materials for Soft Robotics – Sensors and Actuators

  • Conference paper
  • First Online:
Soft Robotics

Abstract

The advances in nanotechnology during the past two decades have led to several breakthroughs in material sciences. Ongoing and future tasks are related to the transfer of the unique properties of nanostructured materials to the macroscopic behaviour of composite structures and the system integration of novel materials for improved mechanical, electronic and optical devices. Nanostructured carbons, especially carbon nanotubes, are promising candidates as novel material for future applications in several fields. One of the big aims is the utilisation of the unique intrinsic mechanical and electronic properties of carbon nanotubes for sensing and actuation devices. The combination of excellent electrical conductivity and mechanical deformation makes carbon nanotubes ideal for applications in sensors and actuators and opens new possibilities in construction design of next generation robotic systems, which can be built with soft, bendable and stretchable materials. This chapter gives a brief overview on the properties of carbon nanotubes and their potential for actuators and sensors in soft robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 245:56–58

    Article  Google Scholar 

  2. Saito R, Dresselhaus G, Dresselhaus M (1998) Physical properties of carbon nanotubes. Imperial college press

    Google Scholar 

  3. Louie SG (2001) Electronic properties, junctions and defects of carbon nanotubes. In: Carbon nanotubes – synthesis, structure, properties and applications, Springer

    Google Scholar 

  4. Martel L, Schmidt T, Shea HR et al (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73(17):2447–2449

    Article  Google Scholar 

  5. Hong S, Myung S (2007) A flexible approach to mobility. Nature Nanotechnology 2:207–208

    Article  Google Scholar 

  6. Szabo A, Perri C, Csato A (2010) Synthesis methods of carbon nanotubes and related ma-terials. Materials 3:3092–3140

    Article  Google Scholar 

  7. Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of carbon nanotubes by diam ter in density gradients. Nano Lett. 5:713–718

    Article  Google Scholar 

  8. Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure via density differentiation. Nature Nanotechnology 1:60–65

    Article  Google Scholar 

  9. Flavel SF, Moore KE, Pfohl M et al (2014) Separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS Nano 8(2):1817–1826

    Article  Google Scholar 

  10. De S, King PJ, Lyons PE et al (2010) Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 4(12):7064–7072

    Article  Google Scholar 

  11. Dan B, Irvin GC, Pasquali M (2009) Continuous and scalable fabrication of transparent conductive carbon nanotube films. ACS Nano 3(4):835–843

    Article  Google Scholar 

  12. Mirri F, Ma AWK, Hsu TT (2012) High-performance carbon nanotube transparent con-ductive films by scalable dip coating. ACS Nano 6(11):9737–9744

    Article  Google Scholar 

  13. Kosidlo U, Omastova M, Micisik M et al (2013) Nanocarbon based ionic actuators – a review. Smart Mater Struct 22: 104022

    Article  Google Scholar 

  14. Nemat-Nasser, S, Thomas C. (2001) Electroactive polymer (EAP) actuators as artificial muscles. Reality, potential and challenges. SPIE Press Monograph 139–191.

    Google Scholar 

  15. Qu L., Peng Q, Dai L et al (2008) Carbon nanotube electroactive polymer materials: op-portunities and challenges. MRS Bulletin 33:215–224.

    Article  Google Scholar 

  16. Fukushima T, Asaka K, Kosaka A et al (2005) Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel. Angew. Chem. Int. Ed. 44(16):2410–2413

    Article  Google Scholar 

  17. Vohrer U, Kolaric I, Haque MH et al (2004) Carbon nanotube sheets for the use as artifi-cial muscles. Carbon 42(5–6):1159–1164

    Article  Google Scholar 

  18. Gao M, Dai L, Baughman RH et al (2000) Electrochemical properties of aligned nano-tube arrays: basis of new electromechanical actuators. In: Proc. SPIE – Int. Soc. Opt. Eng. 3987:18–24

    Google Scholar 

  19. Fraysse J, Minett AI, Jaschinski O. et al (2002) Carbon nanotubes acting like actuators. Carbon 40, 1735–1739

    Article  Google Scholar 

  20. Spinks GM, Mottaghitalab V, Bahrami-Samani M et al (2006) Carbon-Nanotube-Reinforced Polyaniline Fibers for High-Strength Artificial Muscles. Adv. Mater 18(5):637–649

    Article  Google Scholar 

  21. Dahiya RS, Valle M (2013) Robotic tactile sensing. Springer

    Google Scholar 

  22. Lu N, Kim D-H (2014) Flexible and stretchable electronics paving the way for soft robot-ics. Soft Robotics 1(1): 53–62

    Article  Google Scholar 

  23. Ackermann T, Sahakalkan S, Zhang Y et al (2014) Improved performance of transparent silver nanowire electrodes by adding CNTs. In: 8th IEEE NEMS, in print

    Google Scholar 

  24. Tokuno T, Nogi M, Suganuma K (2012) Hybrid transparent electrodes of silver nan-owires and carbon nanotubes: a low temperature solution process. Nanoscale Research Letters 7:281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Addinall, R., Ackermann, T., Kolaric, I. (2015). Nanostructured Materials for Soft Robotics – Sensors and Actuators. In: Verl, A., Albu-Schäffer, A., Brock, O., Raatz, A. (eds) Soft Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44506-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44506-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44505-1

  • Online ISBN: 978-3-662-44506-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics