Skip to main content

Mechanics and Thermodynamics of Biological Muscle – A Simple Model Approach

  • Conference paper
  • First Online:
Soft Robotics

Abstract

Macroscopic muscle models allow for a detailed analysis of the mechanic and thermodynamic function of biological muscles. Here we summarize results from various simulation studies which emphasize the extraordinary design features of biological muscles. Discussed are the benefits resulting from (1) wobbling masses and the muscles soft-tissue inertia effects, (2) biological damping, (3) internal mass distribution, (4) stabilising properties of active muscles in upright stance and periodic hopping, (5) reduced control effort due to these stabilising effects. We present approaches to systematically transfer these results to technical actuators and exploit these properties in the next generation of functional artificial muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.A. McMahon, Muscles, reflexes, and locomotion (Princeton University Press, 1984)

    Google Scholar 

  2. C.N. Maganaris, Acta Physiol Scand 172(4), 279 (2001)

    Google Scholar 

  3. A.N. Ahn, R.J. Full, Journal of Experimental Biology 205(3), 379 (2002)

    Google Scholar 

  4. R. Heidenhain, Mechanische Leistung, Wärmeentwicklung und Stoffumsatz bei der Muskelthätigkeit (Breitkopf und Härtel, Leipzig, 1864)

    Google Scholar 

  5. A.V. Hill, Proceedings of the Royal Society of London. Series B 126(843), 136 (1938)

    Google Scholar 

  6. G.K. Klute, J.M. Czerniecki, B. Hannaford, The International Journal of Robotics Re-search 21(4), 295 (2002)

    Google Scholar 

  7. T. McGeer, The International Journal of Robotics Research 9(2), 62 (1990)

    Google Scholar 

  8. R. Blickhan, Journal of Biomechanics 22(11/12), 1217 (1989)

    Google Scholar 

  9. H. Geyer, A. Seyfarth, R. Blickhan, Proceedings of the Royal Society B: Biological Sci-ences 273(1603), 2861 (2006)

    Google Scholar 

  10. M. Günther, V. Sholukha, D. Keßler, V. Wank, R. Blickhan, Journal of Mechanics in Medicine and Biology 3(3/4), 309 (2003)

    Google Scholar 

  11. S. Schmitt, M. Günther, Archive of Applied Mechanics 81(7), 887 (2011)

    Google Scholar 

  12. M. Günther, S. Schmitt, V. Wank, Biological Cybernetics 97(1), 63 (2007)

    Google Scholar 

  13. M. Günther, O. Röhrle, D.F.B. Haeufle, S. Schmitt, Comput Math Methods Med 2012, 848630 (2012)

    Google Scholar 

  14. A.J. van Soest, M.F. Bobbert, Biological Cybernetics 69(3), 195 (1993)

    Google Scholar 

  15. M.M. van der Krogt, W.W. de Graaf, C.T. Farley, C.T. Moritz, L.J.R. Casius, M.F. Bob-bert, Journal of Applied Physiology 107(3), 801 (2009)

    Google Scholar 

  16. H. Geyer, A. Seyfarth, R. Blickhan, Proceedings of the Royal Society of London. Series B, 270(1529), 2173 (2003)

    Google Scholar 

  17. D.F.B. Haeufle, M. Günther, G. Wunner, S. Schmitt, Phys Rev E 89(1), 012716 (2014)

    Google Scholar 

  18. I.E. Brown, S.H. Scott, G.E. Loeb, Society of Neuroscience, Abstracts 21, 562 (1995)

    Google Scholar 

  19. S. Schmitt, M. Günther, T. Rupp, A. Bayer, D. Häufle, Comput Math Methods Med 2013, 570878 (2013)

    Google Scholar 

  20. D.F.B. Häufle, S. Grimmer, A. Seyfarth, Bioinspiration & Biomimetics 5(1), 016004 (2010)

    Google Scholar 

  21. D.F.B. Haeufle, S. Grimmer, K.T. Kalveram, A. Seyfarth, Journal of the Royal Society, Interface 9(72), 1458 (2012)

    Google Scholar 

  22. K. Goher, M. Tokhi, in Proceedings of the 22nd European Other on Modelling and Simulation, vol. 5 (2005), vol. 5, pp. 3–6

    Google Scholar 

  23. R.J. Wai, IEEE Transactions on Industrial Electronics 53(4), 1328 (2006)

    Google Scholar 

  24. J.E. Bobrow, B. Martin, G. Sohl, E.C. Wang, F.C. Park, J. Kim, Journal of Robotic Sys-tems 18(12), 785 (2001)

    Google Scholar 

  25. Y. Fang, X. Tan, G. Alici, IEEE Transactions on Control Systems Technology 16(4), 600 (2008)

    Google Scholar 

  26. J. Lilly, P. Quesada, IEEE Transactions on Neural Systems and Rehabilitation Engineer-ing 12(3), 349 (2004)

    Google Scholar 

  27. A.D. Kuo, IEEE Transactions on Biomedical Engineering 42(1), 87 (1995)

    Google Scholar 

  28. A.C. Schouten, E. de Vlugt, F.C.T. van der Helm, G.G. Brouwn, Biological Cybernetics 84(2), 143 (2001)

    Google Scholar 

  29. D.B. Lockhart, L.H. Ting, Nature Neuroscience 10(10), 1329 (2007)

    Google Scholar 

  30. C.E. Shannon, Bell System Technical Journal, reprint with corrections 27(7,10), 379 (1948)

    Google Scholar 

  31. M. Günther, S. Schmitt, Journal of Theoretical Biology 263(4), 407 (2010)

    Google Scholar 

  32. S. Schmitt, D.F.B. Haeufle, R. Blickhan, M. Günther, Bioinspir Biomim 7(3), 036022 (2012)

    Google Scholar 

  33. C. Barclay, The Journal of Physiology 497(Pt 3), 781 (1996)

    Google Scholar 

  34. J.M. Winters, Multiple muscle systems: biomechanics and movement organization (Springer-Verlag Berlin and Heidelberg GmbH & Co. Kg., 1990), chap. Hill-based mus-cle models: a systems engineering perspective, pp. 69–93

    Book  Google Scholar 

  35. A. Hill, Proceedings of the Royal Society of London B 159, 1297 (1964)

    Google Scholar 

  36. B. Hannaford, K. Jaax, G. Klute, Autonomous Robots 11(3), 267 (2001)

    Google Scholar 

  37. M. von Jacobi, Mémoire sur l’application de l’électromagnetisme au mouvement des ma-chines. Tech. rep., Potsdam (1835)

    Google Scholar 

  38. G.A. Pratt, M.M. Williamson, Proceedings 1995 IEEE/RSJ International Other on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots pp. 399–406 (1995)

    Google Scholar 

  39. J.D. Madden, Science 318(5853), 1094 (2007)

    Google Scholar 

  40. R. Baughman, Science (New York, NY) 308(5718), 63 (2005)

    Google Scholar 

  41. H.F. Schulte, in The application of external power in prosthetics and orthotics (Publica-tion 874 of the National Academy of Sciences, 1961), pp. 94–115

    Google Scholar 

  42. D. Caldwell, G. Medrano-Cerda, M. Goodwin, Control Systems, IEEE 15(1), 40 (1995)

    Google Scholar 

  43. Y. Bar-Cohen, in Proceedings of the SPIE’s 6th Annual International Symposium on Smart Structures and Materials, vol. 3669, ed. by Y. Bar-Cohen (1999), vol. 3669, pp. 1–414

    Google Scholar 

  44. G. Klute, J. Czerniecki, B. Hannaford, Advanced Intelligent Mechatronics, 1999. Pro-ceedings. 1999 IEEE/ASME International Other on pp. 221–226 (1999)

    Google Scholar 

  45. V. Lombardi, G. Piazzesi, M. Ferenczi, H. Thirlwell, I. Dobbie, M. Irving, Nature 374(6522), 553 (1995)

    Google Scholar 

  46. M. Reconditi, M. Linari, L. Lucii, A. Stewart, Y. Sun, P. Boesecke, T. Narayanan, R. Fischetti, T. Irving, G. Piazzesi, M. Irving, V. Lombardi, Nature 428(6982), 578 (2004)

    Google Scholar 

  47. I. Telley, J. Denoth, K. Ranatunga, Advances in Experimental Medicine and Biology 538, 481 (2003)

    Google Scholar 

  48. H. Huxley, European Journal of Biochemistry 271(8), 1405 (2004)

    Google Scholar 

  49. D.F.B. Häufle, M. Günther, R. Blickhan, S. Schmitt, Rehabilitation Robotics (ICORR), 2011 IEEE International Other on pp. 1–6 (June 29 2011-July 1 2011)

    Google Scholar 

  50. D.F.B. Häufle, M. Günther, R. Blickhan, S. Schmitt, Applied Bionics and Biomechanics 9(3), 276 (2012)

    Google Scholar 

  51. D.F.B. Häufle, M. Günther, R. Blickhan, S. Schmitt, Journal of Bionic Engineering 9(2), 211 (2012)

    Google Scholar 

  52. A. Albu-Schäffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimbock, S. Wolf, G. Hirzinger, IEEE Robotics & Automation Magazine 15(3), 20 (2008)

    Google Scholar 

  53. A. Seyfarth, K.T. Kalveram, H. Geyer, in Proceedings of Fachgespräche Autonome Mo-bile Systeme (Springer, 2007), p. 294300

    Google Scholar 

  54. J. Hurst, A. Rizzi, IEEE Robotics & Automation Magazine 15(3), 42 (2008)

    Google Scholar 

  55. R. Ham, T. Sugar, B. Vanderborght, K. Hollander, D. Lefeber, IEEE Robotics & Auto-mation Magazine 16(3), 81 (2009)

    Google Scholar 

  56. E. Garcia, J. Arevalo, G. Munoz, P.G. de Santos, Robotics and Autonomous Systems 59(10), 827 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmitt, S., Haeufle, D. (2015). Mechanics and Thermodynamics of Biological Muscle – A Simple Model Approach. In: Verl, A., Albu-Schäffer, A., Brock, O., Raatz, A. (eds) Soft Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44506-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44506-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44505-1

  • Online ISBN: 978-3-662-44506-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics