Skip to main content

Simulation Technology for Soft Robotics Applications

  • Conference paper
  • First Online:
Book cover Soft Robotics

Abstract

Soft robots are implied to be inherently safe, and thus "compatible", not only with human coworkers in a production environment, but also with the "family around the house". Such soft robots today still hold numerous new challenges for their design and control, for their commanding and supervision approaches as well as for human-robot interaction concepts. The research field of eRobotics is currently underway to provide a modern basis for efficient soft robotic developments. The objective is to effectively use electronic media - hence the "e" at the beginning of the term – to achieve the best possible advance in the research field. A key feature of eRobotics is its capability to join multiple process simulation components under one "software roof" to build "Virtual Testbeds", i.e. to alleviate the dependancy on physical prototypes and to provide a comprehensive tool chain support for the analysis, development, testing, optimization, deployment and commanding of soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atorf L, Schluse M, Rossmann J (2014) Simulation-based optimization, reasoning, and control: The eRobotics approach towards intelligent robots. In: Int. Symp. on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), to be published

    Google Scholar 

  2. Blochwitz T, Otter M, Arnold M, Bausch C, Clauß C, Elmqvist H, Junghanns A, Mauss J, Monteiro M, Neidhold T, et al (2011) The functional mockup interface for tool inde-pendent exchange of simulation models. In: 8th International Modelica Conference, pp 20–22

    Google Scholar 

  3. Borutzky W (2006) Bond graph modeling and simulation of mechatronic systems: An in-troduction into the methodology. In: 20th European Conference on Modeling and Simula-tion (ECMS)

    Google Scholar 

  4. Broenink JF (1999) Introduction to physical systems modelling with bond graphs. URL http://www.ce.utwente.nl/bnk/papers/BondGraphsV2.pdf

  5. Busch M (2012) Zur effizienten Kopplung von Simulationsprogrammen. Kassel Univer-sity Press GmbH

    Google Scholar 

  6. Coppelia Robotics Software (2014) V-rep. URL http://www.coppeliarobotics.com

  7. Dassault Systems (2014) Delmia software. URL: http://www.3ds.com/de/produkte-und-services/delmia/loesungen/alle-delmia-loesungen/

  8. Dolinsky JU (2001) The development of a genetic programming method for kinematic robot calibration. Dissertation, Liverpool John Moores University

    Google Scholar 

  9. Featherstone R (2008) Rigid Body Dynamics Algorithms, vol 49. Springer New York

    Google Scholar 

  10. Ferraguti F, Golinelli N, Secchi C, Preda N, Bonfe M (2013) A component-based soft-ware architecture for control and simulation of robotic manipulators. In: Emerging Tech-nologies & Factory Automation (ETFA), IEEE

    Google Scholar 

  11. Festo AG & Co KG (2012) Bionic Handling Assistant. URL http://www.festo.com/net/SupportPortal/Files/42050/Brosch%5C_FC%5C_BHA%5C_3%5C_0%5C_EN%5C_lo.pdf. Accessed 2014-16–05

  12. Fisette P, Samin J (1993) Robotran: Symbolic generation of multi-body system dynamic equations. In: Advanced Multibody System Dynamics, Springer, pp 373–378

    Google Scholar 

  13. Germann JM, Maesani A, Floreano D, Stöckli M (2013) Soft cell simulator: A tool to study soft multi-cellular robots. In: Int. Conference on Robotics and Biomimetics, IEEE, EPFL-CONF-196284, pp 1300–1305

    Google Scholar 

  14. Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C (2012) A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: Int. Conf. on Robotics and Automation (ICRA), IEEE, pp 3819–3824

    Google Scholar 

  15. Hiller J, Lipson H (2014) Voxcad. URL http://www.voxcad.com/

  16. Hiller J, Lipson H (2014) Dynamic simulation of soft multimaterial 3d-printed objects. Soft Robotics 1(1):88–101

    Article  Google Scholar 

  17. Iida F, Laschi C (2011) Soft robotics: Challenges and perspectives. Procedia Computer Science 7:99–102

    Article  Google Scholar 

  18. Jung TJ (2009) Methoden der Mehrkörperdynamiksimulation als Grundlage realitätsna-her virtueller Welten. Dissertation, RWTH Aachen University

    Google Scholar 

  19. Kaigom EG, Rossmann J (2013) A new eRobotics approach: Simulation of adaptable joint admittance control. In: Int. Conf. on Mechatronics and Automation (ICMA), IEEE, pp 550–555

    Google Scholar 

  20. Kaigom EG, Rossmann J (2013) Simulation of actuated and controlled robot manipula-tors. International Journal of Mechatronics and Automation (IJMA)) 3(3):191–202

    Article  Google Scholar 

  21. Lipson H (2013) Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robotics 1(P):21–27

    Google Scholar 

  22. Müller R, Esser M, Janßen C, Vette M (2010) Systemidentifikation für Montagezellen-Erhöhte Genauigkeit und bedarfsgerechte Rekonfiguration. wt Werkstattstechnik online 100(9):687–691

    Google Scholar 

  23. Open Source Robotics Foundation (2014) Gazebosim homepage. URL http://gazebosim.org/

  24. Ott C, Albu-Schäffer A, Kugi A, Hirzinger G (2003) Decoupling based Cartesian imped-ance control of flexible joint robots. In: Int. Conf. on Robotics and Automation (ICRA), IEEE, pp 3101–3107

    Google Scholar 

  25. Pfeifer R, Marques HG, Iida F (2013) Soft robotics: the next generation of intelligent ma-chines. In: Int. Conf. on Artificial Intelligence, AAAI Press, pp 5–11

    Google Scholar 

  26. Process Simulate Software (2014) Processsimulate. URL http://www.plm.automation.siemens.com/de_de/products/tecnomatix/robotics_automation/robotexpert.shtml

  27. Renda F, Cianchetti M, Giorelli M, Arienti A, Laschi C (2012) A 3d steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspira-tion & biomimetics 7(2):025,006

    Google Scholar 

  28. Robinson G, Davies J (1999) Continuum robots - a state of the art. In: Int. Conf. on Ro-botics and Automation (ICRA), IEEE

    Google Scholar 

  29. Roos E, Behrens A, Anton S (1997) Rds-realistic dynamic simulation of robots. In: Int. Symp. on Industrial Robots, Int. Fed. of Robotics & Robotic Industries, vol 28, pp 17–27

    Google Scholar 

  30. Rossdeutscher M, Zuern M, Berger U (2010) Virtual robot program development for as-sembly processes using rigid-body simulation. In: Int. Conf. on Computer Supported Co-operative Work in Design, IEEE, pp 417–422

    Google Scholar 

  31. Rossmann J, Schluse M, Jung T, Rast M (2009) Close to reality simulation of bulk solids using a kind of 3d cellular automaton. In: Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf. (IDETC/CIE), ASME

    Google Scholar 

  32. Rossmann J, Wischnewski R, Stern O (2010) A comprehensive 3-d simulation system for the virtual production. In: Int. Industrial Simulation Conference (ISC), pp 109–116

    Google Scholar 

  33. Rossmann J, Steil T, Springer M (2012) Validating the camera and light simulation of a virtual space robotics testbed by means of physical mockup data. In: Int. Symp. on Artifi-cial Intelligence, Robotics and Automation in Space (i-SAIRAS)

    Google Scholar 

  34. Rossmann J, Schluse M, Schlette C, Waspe R (2013) A new approach to 3d simulation technology as enabling technology for erobotics. In: Int. Simulation Tools Conf. & EXPO (SIMEX), pp 39–46

    Google Scholar 

  35. Rudolph J, Woittennek F (2008) An algebraic approach to parameter identification in lin-ear infinite dimensional systems. In: Mediterranean Conf. on Control and Automation, IEEE, pp 332–337

    Google Scholar 

  36. Siemens (2014) Robcad. URL http://www.plm.automation.siemens.com/de_de/products/tecnomatix/robotics_automation/robcad/

  37. Siemens PLM Software (2014) Robotexpert. URL http://www.plm.automation.siemens.com/de_de/products/tecnomatix/robotics_automation/robotexpert.shtml

  38. Song P, Trinkle JC, Kumar V, Pang JS (2004) Design of part feeding and assembly pro-cesses with dynamics. In: Int. Conf. in Robotics and Atomation (ICRA), IEEE, vol 1, pp 39–44

    Google Scholar 

  39. Trivedi D, Rahn CD (2014) Model-based shape estimation for soft robotic manipulators: The planar case. Mechanisms and Robotics 6:021,005-1-021,005–10

    Google Scholar 

  40. Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics 5(3):99–117

    Google Scholar 

  41. Vukobratovic M (2009) Dynamics and robust control of robot-environment interaction, vol 2. World Scientific

    Google Scholar 

  42. Wahl FM, Thomas U (2002) Robot programming-from simple moves to complex robot tasks. Institute for Robotics and Process Control, Technical University of Braunschweig

    Google Scholar 

  43. Yoo YH, Jung T, Römmermann M, Rast M, Kirchner F, Rossmann J, & Center RI (2010). Developing a virtual environment for extraterrestrial legged robot with focus on lunar crater exploration. In Proceeding of 10th International Symposium on Artificial In-telligent, Robotics and Automation in Space, vol. 29, No. 01.9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roßmann, J., Schluse, M., Rast, M., Kaigom, E., Cichon, T., Schluse, M. (2015). Simulation Technology for Soft Robotics Applications. In: Verl, A., Albu-Schäffer, A., Brock, O., Raatz, A. (eds) Soft Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44506-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44506-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44505-1

  • Online ISBN: 978-3-662-44506-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics