Skip to main content

Special Core Analysis (SCAL)

  • Chapter
  • First Online:
Dynamic Pulsed-Field-Gradient NMR

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 110))

  • 1237 Accesses

Abstract

Due to the challenges of performing well-controlled NMR experiments down in the borehole, equivalent laboratory techniques for the characterisation of the rock core removed from the well and brought to the surface have emerged. Along with various other core characterisation techniques, the NMR laboratory analysis of cores is referred to by the oil industry as special core analysis (SCAL), and has become a valuable tool in characterising the reservoir properties. In this chapter, applications that have been developed for better understanding of the formation from which the rock core plugs has been drilled are presented with examples. The applications used will depend on the state of the rock core plugs, defined by type of fluids and their saturation in the pore space of the plug. The sections will be devoted to native state plugs and cleaned plugs saturated with various fractions of brine and oil. One of the most important states to measure during the SCAL program is the cleaned rock core plugs saturated with brine. With PFG NMR, information on characteristic properties of the porous system will be extracted, for example the pore size distribution and the connectivity of pores. By making use of the existence of internal magnetic field gradients, surface coating is also probed. In addition, on six plugs, a series of measurements at various states are presented, in order to probe the wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J.S. Brown, The Earth’s-field NML development at Chevron. Concepts Magn. Reson. 13(6), 344–366 (2001)

    Article  CAS  Google Scholar 

  2. S. Luthi, Nuclear Magnetic Resonance Logging, in Geological Well Logs (Springer, Berlin, 2001), pp. 159–182

    Book  Google Scholar 

  3. K.J. Dunn, D.J. Bergman, G.A. LaTorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Applications (Elsevier Science, Oxford, 2002)

    Google Scholar 

  4. M.G. Prammer, NMR logging-while-drilling (1995–2000). Concepts Magn. Reson. 13(6), 409–411 (2001)

    Article  Google Scholar 

  5. S. Meiboom, D. Gill, Modified Spin-Echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 688–691 (1958)

    Article  CAS  Google Scholar 

  6. M.D. Hürlimann, L. Venkataramanan, Quantitative measurement of two-dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields. J. Magn. Reson. 157(1), 31–42 (2002)

    Article  Google Scholar 

  7. M.D. Hürlimann, Effective gradients in porous media due to susceptibility differences. J. Magn. Reson. 131(2), 232–240 (1998)

    Article  Google Scholar 

  8. F. Civan, F. Civan, Reservoir Formation Damage (Elsevier Science, Oxford, 2011)

    Google Scholar 

  9. G.H. Sorland et al., Determination of total fat and moisture content in meat using low field NMR. Meat Sci. 66(3), 543–550 (2004)

    Article  Google Scholar 

  10. G.H. Sørland, H.C. Widerøe, Improved characterization of 1.5 inch, brine-saturated rock cores using a newly designed 12.8-MHz rock core analyzer. Magn. Reson. Imag. 25(4), 584–585 (2007)

    Article  Google Scholar 

  11. F. Bergaya, B.K.G. Theng, G. Lagaly, Handbook of Clay Science (Elsevier Science, Oxford, 2011)

    Google Scholar 

  12. P.P. Mitra, P.N. Sen, L.M. Schwartz, Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys. Rev. B 47(14), 8565–8574 (1993)

    Article  Google Scholar 

  13. M.D. Hurlimann et al., Restricted diffusion in sedimentary rocks. Determination of surface-area-to-volume ratio and surface relaxivity. J. Magn. Reson. Ser. A 111(2), 169–178 (1994)

    Article  Google Scholar 

  14. G.H. Sørland, D. Aksnes, L. Gjerdåker, A pulsed field gradient spin-echo method for diffusion measurements in the presence of internal gradients. J. Magn. Reson. 137(2), 397–401 (1999)

    Article  Google Scholar 

  15. G.H. Sørland, B. Hafskjold, O. Herstad, A stimulated-echo method for diffusion measurements in heterogeneous media using pulsed field gradients. J. Magn. Reson. 124(1), 172–176 (1997)

    Article  Google Scholar 

  16. K.S. Mendelson, Nuclear magnetic resonance in sedimentary rocks: effect of proton desorption rate. J. Appl. Phys. 53(9), 6465–6466 (1982)

    Article  CAS  Google Scholar 

  17. J. Uh, A.T. Watson, Nuclear magnetic resonance determination of surface relaxivity in permeable media. Ind. Eng. Chem. Res. 43(12), 3026–3032 (2004)

    Article  CAS  Google Scholar 

  18. H.L. Ritter, L.C. Drake, Pressure porosimeter and determination of complete macropore-size distributions. Ind. Eng. Chem. Anal. Ed. 17(12), 782–786 (1945)

    Article  CAS  Google Scholar 

  19. R.L. Kleinberg, S.A. Farooqui, M.A. Horsfield, T1/T2 ratio and frequency dependence of NMR relaxation in porous sedimentary rocks. J. Colloid Interface Sci. 158(1), 195–198 (1993)

    Article  CAS  Google Scholar 

  20. L.L. Latour, R.L. Kleinberg, A. Sezginer, Nuclear magnetic resonance properties of rocks at elevated temperatures. J. Colloid Interface Sci. 150(2), 535–548 (1992)

    Article  CAS  Google Scholar 

  21. J. Stepišnik, Validity limits of Gaussian approximation in cumulant expansion for diffusion attenuation of spin echo. Physica B 270(1–2), 110–117 (1999)

    Article  Google Scholar 

  22. P.P. Mitra, B.I. Halperin, Effects of finite gradient-pulse widths in pulsed-field-gradient diffusion measurements. J. Magn. Reson. Ser. A 113(1), 94–101 (1995)

    Article  CAS  Google Scholar 

  23. E.J. Fordham, P.P. Mitra, L.L. Latour, Effective diffusion times in multiple-pulse pfg diffusion measurements in porous media. J. Magn. Reson. Ser. A 121(2), 187–192 (1996)

    Article  CAS  Google Scholar 

  24. Y. Nakashima, Pulsed field gradient proton NMR study of the self-diffusion of H2O in montmorillonite gel: effects of temperature and water fraction. Am. Mineral. 86(1–2), 132–138 (2001)

    CAS  Google Scholar 

  25. L.L. Latour et al., Pore-size distributions and tortuosity in heterogeneous porous media. J. Magn. Reson. Ser. A 112(1), 83–91 (1995)

    Article  CAS  Google Scholar 

  26. J.G. Seland et al., Diffusion measurements at long observation times in the presence of spatially variable internal magnetic field gradients. J. Magn. Reson. 146(1), 14–19 (2000)

    Article  CAS  Google Scholar 

  27. G.H. Sorland, D. Aksnes, L. Gjerdaker, A pulsed field gradient spin-echo method for diffusion measurements in the presence of internal gradients. J. Magn. Reson. 137(2), 397–401 (1999)

    Article  CAS  Google Scholar 

  28. R.M. Cotts et al., Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J. Magn. Reson. (1969) 83(2), 252–266 (1989)

    Article  CAS  Google Scholar 

  29. Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. Drilling Prod Pract. Am. Petrol. Inst. 200–213

    Google Scholar 

  30. K.R. Brownstein, C.E. Tarr, Importance of classical diffusion in NMR studies of water in biological cells. Phys. Rev. A 19(6), 2446–2453 (1979)

    Article  Google Scholar 

  31. L.E. Drain, The broadening of magnetic resonance lines due to field inhomogeneities in powdered samples. Proc. Phys. Soc. 80(6), 1380 (1962)

    Article  CAS  Google Scholar 

  32. G.Q. Zhang, G.J. Hirasaki, Internal field gradients in porous media. Petrophys. Houston 44, 422–434 (2003)

    Google Scholar 

  33. L.J. Zielinski, P.N. Sen, Combined effects of diffusion, nonuniform-gradient magnetic fields, and restriction on an arbitrary coherence pathway. J. Chem. Phys. 119(2), 1093–1104 (2003)

    Article  CAS  Google Scholar 

  34. H. Rueslåtten, NMR studies of an iron-rich sanstone oil reservoir. The Society of Core Analysts SCA 9821 (1998)

    Google Scholar 

  35. W.H. Press, Numerical Recipes in FORTRAN Example Book: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  36. G.H. Sørland et al., Exploring the separate NMR responses from crude oil and water in rock cores. Appl. Magn. Reson. 26(3), 417–425 (2004)

    Article  Google Scholar 

  37. J.G. Seland et al., Combining PFG and CPMG NMR measurements for separate characterization of oil and water simultaneously present in a heterogeneous system. Appl. Magn. Reson. 24(1), 41–53 (2003)

    Article  CAS  Google Scholar 

  38. M.D. Hürlimann, L. Venkataramanan, C. Flaum, The diffusion–spin relaxation time distribution function as an experimental probe to characterize fluid mixtures in porous media. J. Chem. Phys. 117(22), 10223–10232 (2002)

    Article  Google Scholar 

  39. E. Amott, Observations relating to the wettability of porous rock. Trans AIME 216, 156–162 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Humborstad Sørland .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sørland, G.H. (2014). Special Core Analysis (SCAL). In: Dynamic Pulsed-Field-Gradient NMR. Springer Series in Chemical Physics, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44500-6_8

Download citation

Publish with us

Policies and ethics