Skip to main content

Emulsion Characterisation

  • Chapter
  • First Online:
Dynamic Pulsed-Field-Gradient NMR

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 110))

  • 1276 Accesses

Abstract

Emulsions are dispersions of oil and water classified according to the nature of the continuous phase. The simplest classification is water-in-oil emulsions and oil-in-water emulsion. A variety of pulsed field gradient nuclear magnetic resonance (PFG NMR) experiments will be presented, providing data that can be converted into droplet size distributions (DSD), water profiles or surface to volume profiles. PFG NMR is a versatile technique, and often there are several possible methods to determine the DSD. How to choose the appropriate method is discussed, as it sometimes may be a challenge to select the best sequence for a given emulsion system. As the key to successful droplet size measurements is proper resolution of the water signal from the crude oil, this will also be given a thorough treatment, along with artefacts that may interfere with this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Holmberg et al., “Emulsions and EmulsifiersSurfactants and Polymers in Aqueous Solution (Wiley, New York, 2003), pp. 451–471

    Google Scholar 

  2. F. Leal-Calderon, J. Bibette, V. Schmitt, Double Emulsions, in Emulsion Science (Springer, New York, 2007), pp. 173–199

    Google Scholar 

  3. A. Bhardwaj, S. Hartland, Dynamics of emulsification and demulsification of water in crude oil emulsions. Ind. Eng. Chem. Res. 33(5), 1271–1279 (1994)

    Article  CAS  Google Scholar 

  4. D.J. McClements, Food Emulsions: Principles, Practice, and Techniques (CRC Press, Boca Raton, 2005)

    Google Scholar 

  5. J. Sjoblom, Encyclopedic Handbook of Emulsion Technology (Taylor & Francis, UK, 2001)

    Google Scholar 

  6. F. Nielloud, Pharmaceutical Emulsions and Suspensions: Second Edition, Revised and Expanded (Taylor & Francis, UK, 2000)

    Google Scholar 

  7. G.H. Sorland, Characterization of emulsions by PFG-NMR. Magn. Reson. Porous Media 1330, 27–30 (2011)

    Google Scholar 

  8. N.V. Opedal, G. Sorland, J. Sjoblom, Emulsion stability studied by nuclear magnetic resonance (NMR). Energy Fuels 24, 3628–3633 (2010)

    Article  Google Scholar 

  9. G.H. Sorland et al., Determination of total fat and moisture content in meat using low field NMR. Meat Sci. 66(3), 543–550 (2004)

    Article  Google Scholar 

  10. Y. Asano, K. Sotoyama, Food Chem. 66, 327–331 (1999)

    Article  CAS  Google Scholar 

  11. Y. Otsubo, R.K. Prud’homme, Rheol. Acta 33, 303–306 (1994)

    Article  CAS  Google Scholar 

  12. E.S. Basheva et al., Langmuir 15, 6764–6769 (1999)

    Article  CAS  Google Scholar 

  13. M. Chakraborty, C. Bhattacharya, S. Datta, Colloids Surf., A 224, 65–74 (2003)

    Article  CAS  Google Scholar 

  14. J.N. Coupland, D. Julian McClements, Droplet size determination in food emulsions: Comparison of ultrasonic and light scattering methods. J. Food Eng. 50(2), 117–120 (2001)

    Article  Google Scholar 

  15. J.N. Coupland, D.J. McClements, J. Food Eng. 50, 117–120 (2001)

    Article  Google Scholar 

  16. P.V. Hemmingsen et al., Droplet size distributions of oil-in-water emulsions under high pressures by video microscopy. 2nd edn., ed. by J. Sjöblom. Emulsion and Emulsion Stability, vol. 132 (Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  17. R. Bernewitz, G. Guthausen, H.P. Schuchmann, NMR on emulsions: Characterisation of liquid dispersed systems. Magn. Reson. Chem. 49(1), S93–S104 (2011)

    Article  CAS  Google Scholar 

  18. M.A. Voda, J. van Duynhoven, Characterization of food emulsions by PFG NMR. Trends Food Sci. Technol. 20(11–12), 533–543 (2009)

    Article  CAS  Google Scholar 

  19. O. Söderman, Pulsed field gradient NMR studies of emulsions: Dsroplet sizes and concentrated emulsions, ed. by K. Kawasaki, B. Lindman, H. Okabayashi. Formation and Dynamics of Self-organized Structures in Surfactants and Polymer Solutions (Steinkopff, Germany, 1997), pp. 34–41

    Google Scholar 

  20. K.J. Packer, C. Rees, Pulsed NMR studies of restricted diffusion. I. Droplet size distributions in emulsions. J. Colloid Interface Sci. 40(2), 206–218 (1972)

    Article  CAS  Google Scholar 

  21. S. Simon et al., Separation profile of model water-in-oil emulsions followed by nuclear magnetic resonance (NMR) measurements: Application range and comparison with a multiple-light scattering based apparatus. J. Colloid Interface Sci. 356(1), 352–361 (2011)

    Article  CAS  Google Scholar 

  22. F. Civan, Viscosity-temperature correlation for crude oils using an Arrhenius-type asymptotic exponential function. Pet. Sci. Technol. 24(6), 699–706 (2006)

    Article  CAS  Google Scholar 

  23. P.M. Kampmeyer, The temperature dependence of viscosity for water and mercury. J. Appl. Phys. 23(1), 99–102 (1952)

    Article  CAS  Google Scholar 

  24. E.O. Stejskal, Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43(10), 3597–3603 (1965)

    Article  Google Scholar 

  25. E.O. Stejskal, J.E. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)

    Article  CAS  Google Scholar 

  26. J.E. Tanner, E.O. Stejskal, Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J. Chem. Phys. 49(4), 1768–1777 (1968)

    Article  CAS  Google Scholar 

  27. I. Fourel, J.P. Guillement, D. Le Botlan, Determination of water droplet size distributions by low resolution PFG-NMR: II. “Solid” emulsions. J. Colloid Interface Sci. 169(1), 119–124 (1995)

    Article  CAS  Google Scholar 

  28. D. Gabriele et al., Characterisation of dairy emulsions by NMR and rheological techniques. Food Hydrocolloids 23(3), 619–628 (2009)

    Article  CAS  Google Scholar 

  29. J.P.M. van Duynhoven et al., Scope of droplet size measurements in food emulsions by pulsed field gradient NMR at low field. Magn. Reson. Chem. 40(13), S51–S59 (2002)

    Article  Google Scholar 

  30. C.P. Aichele et al., Water in oil emulsion droplet size characterization using a pulsed field gradient with diffusion editing (PFG-DE) NMR technique. J. Colloid Interface Sci. 315(2), 607–619 (2007)

    Article  CAS  Google Scholar 

  31. S. Kiokias, A.A. Reszka, A. Bot, The use of static light scattering and pulsed-field gradient NMR to measure droplet sizes in heat-treated acidified protein-stabilised oil-in-water emulsion gels. Int. Dairy J. 14(4), 287–295 (2004)

    Article  CAS  Google Scholar 

  32. B. Balinov, O. Söderman, T. Wärnheim, Determination of water droplet size in margarines and low-calorie spreads by nuclear magnetic resonance self-diffusion. J. Am. Oil Chemists’ Soc. 71(5), 513–518 (1994)

    Article  CAS  Google Scholar 

  33. P.T. Callaghan, K.W. Jolley, R.S. Humphrey, Diffusion of fat and water in cheese as studied by pulsed field gradient nuclear magnetic resonance. J. Colloid Interface Sci. 93(2), 521–529 (1983)

    Article  CAS  Google Scholar 

  34. A.A. Peña, G.J. Hirasaki, Enhanced characterization of oilfield emulsions via NMR diffusion and transverse relaxation experiments. Adv. Colloid Interface Sci. 105(1–3), 103–150 (2003)

    Article  Google Scholar 

  35. P.P. Mitra, P.N. Sen, L.M. Schwartz, Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys. Rev. B 47(14), 8565–8574 (1993)

    Article  Google Scholar 

  36. M.H. Cohen, K.S. Mendelson, Nuclear magnetic relaxation and the internal geometry of sedimentary rocks. J. Appl. Phys. 53(2), 1127–1135 (1982)

    Article  Google Scholar 

  37. K.S. Mendelson, Nuclear magnetic resonance in sedimentary rocks: Effect of proton desorption rate. J. Appl. Phys. 53(9), 6465–6466 (1982)

    Article  CAS  Google Scholar 

  38. A. Valfouskaya et al., Nuclear magnetic resonance diffusion with surface relaxation in porous media. J. Colloid Interface Sci. 295(1), 188–201 (2006)

    Article  CAS  Google Scholar 

  39. J. Uh, A.T. Watson, Nuclear magnetic resonance determination of surface relaxivity in permeable media. Ind. Eng. Chem. Res. 43(12), 3026–3032 (2004)

    Article  CAS  Google Scholar 

  40. G.H. Sorland, D. Aksnes, L. Gjerdaker, A pulsed field gradient spin-echo method for diffusion measurements in the presence of internal gradients. J. Magn. Reson. 137(2), 397–401 (1999)

    Article  CAS  Google Scholar 

  41. J.J. Van Vaals, A.H. Bergman, Optimization of eddy-current compensation. J. Magn. Reson. (1969), 90(1), 52–70 (1990)

    Google Scholar 

  42. J.M. Fauth et al., Elimination of unwanted echoes and reduction of dead time in three-pulse electron spin-echo spectroscopy. J. Magn. Reson. (1969), 66(1), 74–85 (1986)

    Google Scholar 

  43. N. van der Tuuk Opedal, G. Sørland, J. Sjöblom, Methods for droplet size distribution determination of water-in-oil emulsions using low-field NMR. Diffusion fundamentals, 7(diffusion-fundamentals.org), 1–29 (2009)

    Google Scholar 

  44. R. Sandnes et al., Optimization and validation of low field nuclear magnetic resonance sequences to determine low water contents and water profiles in W/O emulsions. Colloids Surf., A

    Google Scholar 

  45. J. Sjoblom, Emulsions and Emulsion Stability: Surfactant Science Series/61 (Taylor & Francis, UK, 2012)

    Google Scholar 

  46. S. Less, A. Hannisdal, J. Sjöblom, An electrorheological study on the behavior of water-in-crude oil emulsions under influence of a DC electric field and different flow conditions. J. Dispersion Sci. Technol. 29(1), 106–114 (2008)

    Article  CAS  Google Scholar 

  47. K.J. Lissant, Demulsification (Marcel Dekker, New York, 1983)

    Google Scholar 

  48. L. Schramm Laurier, Petroleum emulsions, in Emulsions (American Chemical Society, 1992), pp. 1–49

    Google Scholar 

  49. J.-L. Salager et al., Current phenomenological know-how and modeling of emulsion inversion. Ind. Eng. Chem. Res. 39(8), 2665–2676 (2000)

    Article  CAS  Google Scholar 

  50. A. Barrabino et al., Phase inversion in emulsions studied by low field NMR. Colloids Surf., A 443, 368–376 (2014)

    Article  CAS  Google Scholar 

  51. R.F. Karlicek Jr, I.J. Lowe, A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients. J. Magn. Reson. (1969), 37(1), 75–91 (1980)

    Google Scholar 

  52. P.T. Callaghan, Translational Dynamics & Magnetic Resonance (Oxford University Press, Oxford, 2011), p. 547

    Google Scholar 

  53. A. Almela, M.P. Elizalde, R. Benito, The aggregation of Span 80 in toluene. J. Solution Chem. 22(3), 231–241 (1993)

    Article  CAS  Google Scholar 

  54. G.H. Sørland, Short-time PFGSTE diffusion measurements. J. Magn. Reson. 126(1), 146–148 (1997)

    Article  Google Scholar 

  55. A.T. Florence, D. Whitehill, Stabilization of water/oil/water multiple emulsions by polymerization of the aqueous phases. J. Pharm. Pharmacol. 34(11), 687–691 (1982)

    Article  CAS  Google Scholar 

  56. A.T. Florence, D. Whitehill, Some features of breakdown in water-in-oil-in-water multiple emulsions. J. Colloid Interface Sci. 79(1), 243–256 (1981)

    Article  CAS  Google Scholar 

  57. B.W. Brooks, H.N. Richmond, Dynamics of liquid–liquid phase inversion using non-ionic surfactants. Colloids Surf. 58(1–2), 131–148 (1991)

    Article  CAS  Google Scholar 

  58. A.W. Pacek, A.W. Nienow, I.P.T. Moore, On the structure of turbulent liquid–liquid dispersed flows in an agitated vessel. Chem. Eng. Sci. 49(20), 3485–3498 (1994)

    Article  CAS  Google Scholar 

  59. N. Garti, Double emulsions—scope, limitations and new achievements. Colloids Surf., A 123–124, 233–246 (1997)

    Article  Google Scholar 

  60. E.L. Nordgård, G. Sørland, J. Sjöblom, behavior of asphaltene model compounds at w/o interfaces. Langmuir 26(4), 2352–2360 (2009)

    Article  Google Scholar 

  61. E.J. Fordham, P.P. Mitra, L.L. Latour, Effective diffusion times in multiple-pulse PFG diffusion measurements in porous media. J. Magn. Reson. Ser. A 121(2), 187–192 (1996)

    Article  CAS  Google Scholar 

  62. L.Z. Wang, A. Caprihan, E. Fukushima, The narrow-pulse criterion for pulsed-gradient spin-echo diffusion measurements. J. Magn. Reson. Ser. A 117(2), 209–219 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Humborstad Sørland .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sørland, G.H. (2014). Emulsion Characterisation. In: Dynamic Pulsed-Field-Gradient NMR. Springer Series in Chemical Physics, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44500-6_7

Download citation

Publish with us

Policies and ethics