Skip to main content

The Spoiler Recovery Approach (SR)

  • Chapter
  • First Online:
Book cover Dynamic Pulsed-Field-Gradient NMR

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 110))

Abstract

Instead of letting the magnetization reach thermal equilibrium before each scan, a pulse sequence is presented, which applies a combination of RF-pulses and magnetic field gradients to spoil any magnetization in any direction of a sample located in an external magnetic field to produce a net nuclear magnetization, the spoiler recovery (SR) sequence. The basic assumption made is that the state of the nuclear spins at the end of the sequence is comparable to the state without any external applied magnetic field, i.e. the directions of the nuclear spins are randomly oriented in space. Due to the presence of the external magnetic field, the net nuclear magnetization will re-equilibrate along the external magnetic field due to T1 relaxation processes. Using a wait delay equal to T1 after the spoil process, already 63 % of the magnetization present at thermal equilibrium is regained. The wait time between each scan is then reduced to practically zero, as the ordinary 5 times T1 recycle delay is no longer necessary to achieve identical conditions between the accumulating scans. Using a spoiler recovery delay equal to T1, the total experimental time is reduced by 80 % without any major loss of signal to noise. Likewise, the use of the spoiler recovery approach can reduce the acquisition time of two dimensional experiments, as Diffusion-T2 or T1-T2, from the order of hours to the order of minutes. The SR approach is verified using external magnetic fields ranging from 0.047 to 14.1 T. At the highest fields it is also verified that the SR approach can be used to circumvent effects due to radiation damping. A set of applications using the spoiler recovery approach to reduce the acquisition time will be presented, designed either for low or for high external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.T. Callaghan, Translational Dynamics and Magnetic Resonance (Oxford University Press, Oxford, 2011), p. 547

    Book  Google Scholar 

  2. W.S. Price, NMR Studies of Translational Motion Principles and Applications (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  3. T. Stait-Gardner, P.G. Anil Kumar, W.S. Price, Steady state effects in PGSE NMR diffusion experiments. Chem. Phys. Lett. 462(4–6), 331–336 (2008)

    Article  CAS  Google Scholar 

  4. J. Mitchell, M.D. Hürlimann, E.J. Fordham, A rapid measurement of T1/T2: the DECPMG sequence. J. Magn. Reson. 200(2), 198–206 (2009)

    Article  CAS  Google Scholar 

  5. L. Venturi, K. Wright, B. Hills, Ultrafast T1–T2 relaxometry using FLOP sequences. J. Magn. Reson. 205(2), 224–234 (2010)

    Article  CAS  Google Scholar 

  6. M.D. Pelta et al., A one-shot sequence for high-resolution diffusion-ordered spectroscopy. Magn. Reson. Chem. 40(13), S147–S152 (2002)

    Article  CAS  Google Scholar 

  7. Y.-Q. Song, X. Tang, A one-shot method for measurement of diffusion. J. Magn. Reson. 170(1), 136–148 (2004)

    Article  CAS  Google Scholar 

  8. V.V. Krishnan, N. Murali, Radiation damping in modern NMR experiments: progress and challenges. Prog. Nucl. Magn. Reson. Spectrosc. 68, 41–57 (2013)

    Article  CAS  Google Scholar 

  9. R.H. Hashemi, W.G. Bradley, C.J. Lisanti, MRI: The Basics (Wolters Kluwer Health, The Netherlands, 2012)

    Google Scholar 

  10. J.M. Fauth et al., Elimination of unwanted echoes and reduction of dead time in three-pulse electron spin-echo spectroscopy. J. Mag. Reson. 66(1), 74–85 (1986)

    CAS  Google Scholar 

  11. N. Bloembergen, R.V. Pound, Radiation damping in magnetic resonance experiments. Phys. Rev. 95(1), 8–12 (1954)

    Article  Google Scholar 

  12. W.S. Price, F. Tsuchiya, Y. Arata, Lysozyme aggregation and solution properties studied using PGSE NMR diffusion measurements. J. Am. Chem. Soc. 121(49), 11503–11512 (1999)

    Article  CAS  Google Scholar 

  13. P. Broekaert, J. Jeener, Suppression of radiation damping in NMR in liquids by active electronic feedback. J. Magn. Reson. Ser. A 113(1), 60–64 (1995)

    Article  CAS  Google Scholar 

  14. W.E. Maas, F.H. Laukien, D.G. Cory, Suppression of radiation damping by Q switching during acquisition. J. Magn. Reson. Ser. A 113(2), 274–277 (1995)

    Article  CAS  Google Scholar 

  15. H. Barjat, D.L. Mattiello, R. Freeman, Suppression of radiation damping in high-resolution NMR. J. Magn. Reson. 136(1), 114–117 (1999)

    Article  CAS  Google Scholar 

  16. A.K. Khitrin, A. Jerschow, Simple suppression of radiation damping. J. Magn. Reson. 225, 14–16 (2012)

    Article  CAS  Google Scholar 

  17. P.P. Mitra, P.N. Sen, L.M. Schwartz, Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys. Rev. B 47(14), 8565–8574 (1993)

    Article  Google Scholar 

  18. G.H. Sørland, Characterization of emulsions by PFG-NMR. AIP Conf. Proc. 1330(1), 27–30 (2011)

    Article  Google Scholar 

  19. J. Stepišnik, Validity limits of Gaussian approximation in cumulant expansion for diffusion attenuation of spin echo. Phys. B 270(1–2), 110–117 (1999)

    Article  Google Scholar 

  20. G. Grasso, J.J. Titman, Chain folding and diffusion in monodisperse long n-alkanes by solid-state NMR. Macromolecules 42(12), 4175–4180 (2009)

    Article  CAS  Google Scholar 

  21. A.G. Palmer, D.J. Patel, Kurt Wüthrich and NMR of biological macromolecules. Structure 10(12), 1603–1604 (2002)

    Article  CAS  Google Scholar 

  22. K.F. Morris, C.S. Johnson, Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 114(8), 3139–3141 (1992)

    Article  CAS  Google Scholar 

  23. C.S. Johnson Jr, Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34(3–4), 203–256 (1999)

    Article  CAS  Google Scholar 

  24. S.W. Provencher, A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27(3), 213–227 (1982)

    Article  Google Scholar 

  25. H.W. Anthonsen, G.H. Sørland, K. Zick, J. Sjoblom, Quantitative recovery ordered (Q-ROSY) and diffusion ordered spectroscopy using the spoiler recovery approach. Diffus. Fundam. 16, 12 (2012)

    Google Scholar 

  26. F. Leal-Calderon, J. Bibette, V. Schmitt, Double Emulsions, in Emulsion Science (Springer, New York), pp. 173–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Humborstad Sørland .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sørland, G.H. (2014). The Spoiler Recovery Approach (SR). In: Dynamic Pulsed-Field-Gradient NMR. Springer Series in Chemical Physics, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44500-6_6

Download citation

Publish with us

Policies and ethics