Skip to main content

Experimental, Pitfalls and Suggested Solutions

  • Chapter
  • First Online:
  • 1179 Accesses

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 110))

Abstract

The most important distortions that may affect the PFG NMR measurements in a destructive way will be discussed; unwanted coherence transfer pathways, eddy current transients, internal magnetic field gradients, convection, vibration and the effect of finite gradient pulse lengths. All the distortions discussed may be present on high field equipment (i.e. superconducting magnets) as well as on low resolution equipment (i.e. permanent magnets). Although, the magnitude and nature of the effects may vary depending on the type of equipment used. Ways to circumvent or suppress the effect from the abovementioned artefacts will also be discussed, as the application of phase sequences, crusher gradients, preemphasis adjustment, bipolar pulsed field gradients, convection compensated PFG NMR sequences, the second cumulant approximation and corrected effective diffusion/observation times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.D. Bain, Coherence levels and coherence pathways in NMR. A simple way to design phase cycling procedures. J. Magn. Reson. (1969) 56(3), 418–427 (1984)

    Google Scholar 

  2. J.M. Fauth, et al., Elimination of unwanted echoes and reduction of dead time in three-pulse electron spin-echo spectroscopy. J. Magn. Reson. (1969) 66(1), 74–85 (1986)

    Google Scholar 

  3. G.H. Sørland, B. Hafskjold, O. Herstad, A stimulated-echo method for diffusion measurements in heterogeneous media using pulsed field gradients. J. Magn. Reson. 124(1), 172–176 (1997)

    Article  Google Scholar 

  4. E.L. Hahn, Nuclear induction due to free larmor precession. Phys. Rev. 77(2), 297–298 (1950)

    Article  CAS  Google Scholar 

  5. E.L. Hahn, Spin echoes. Phys. Rev. 80(4), 580–594 (1950)

    Article  Google Scholar 

  6. N.E. Jacobsen, NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology (Wiley, New York, 2007)

    Google Scholar 

  7. R.M. Cotts, et al. Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J. Magn. Reson. (1969) 83(2), 252–266 (1989)

    Google Scholar 

  8. R. Blinc, J. Pirš, I. Zupančič, Measurement of self-diffusion in liquid crystals by a multiple-pulse NMR method. Phys. Rev. Lett. 30(12), 546–549 (1973)

    Article  CAS  Google Scholar 

  9. R.F. Karlicek Jr, I.J. Lowe, A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients. J. Magn. Reson. (1969) 37(1), 75–91 (1980)

    Google Scholar 

  10. G.H. Sørland, D. Aksnes, L. Gjerdåker, A pulsed field gradient spin-echo method for diffusion measurements in the presence of internal gradients. J. Magn. Reson. 137(2), 397–401 (1999)

    Article  Google Scholar 

  11. D.H. Wu, A.D. Chen, C.S. Johnson, An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson. Ser. A 115(2), 260–264 (1995)

    Article  CAS  Google Scholar 

  12. A. Jerschow, N. Müller, Suppression of convection artifacts in stimulated-echo diffusion experiments. Double-stimulated-echo experiments. J. Magn. Reson. 125(2), 372–375 (1997)

    Article  CAS  Google Scholar 

  13. G.H. Sorland et al., Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods. J. Magn. Reson. 142(2), 323–325 (2000)

    Article  CAS  Google Scholar 

  14. P.D. Majors, et al., Eddy current compensation by direct field detection and digital gradient modification. J. Magn. Reson. (1969) 87(3), 548–553 (1990)

    Google Scholar 

  15. R.S. Popovic, Hall Effect Devices, Second Edition (Taylor & Francis, London, 2010)

    Google Scholar 

  16. P. Mansfield, B. Chapman, Active magnetic screening of coils for static and time-dependent magnetic field generation in NMR imaging. J. Phys. E: Sci. Instrum. 19(7), 540 (1986)

    Article  Google Scholar 

  17. R. Turner, R.M. Bowley, Passive screening of switched magnetic field gradients. J. Phys. E: Sci. Instrum. 19(10), 876 (1986)

    Article  CAS  Google Scholar 

  18. R. Turner, A target field approach to optimal coil design. J. Phys. D Appl. Phys. 19(8), L147 (1986)

    Article  Google Scholar 

  19. R. Turner, Minimum inductance coils. J. Phys. E: Sci. Instrum. 21(10), 948 (1988)

    Article  Google Scholar 

  20. R. Turner, Gradient coil design: A review of methods. Magn. Reson. Imaging 11(7), 903–920 (1993)

    Article  CAS  Google Scholar 

  21. S.J. Gibbs, K.F. Morris, C.S. Johnson Jr, Design and implementation of a shielded gradient coil for PFG NMR diffusion and flow studies. J. Magn. Reson. (1969), 94(1), 165–169 (1991)

    Google Scholar 

  22. J.J. Van Vaals, A.H. Bergman, Optimization of eddy-current compensation. J. Magn. Reson. (1969) 90(1), 52–70 (1990)

    Google Scholar 

  23. V.J. Schmithorst, B.J. Dardzinski, Automatic gradient preemphasis adjustment: a 15-minute journey to improved diffusion-weighted echo-planar imaging. Magn. Reson. Med. 47(1), 208–212 (2002)

    Article  Google Scholar 

  24. S.J. Gibbs, C.S. Johnson Jr, A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents. J. Magn. Reson. (1969) 93(2), 395–402 (1991)

    Google Scholar 

  25. P.T. Callaghan, PGSE-MASSEY, a sequence for overcoming phase instability in very-high-gradient spin-echo NMR. J. Magn. Reson. (1969) 88(3), 493–500 (1990)

    Google Scholar 

  26. K. Scheffler, Fast frequency mapping with balanced SSFP: theory and application to proton-resonance frequency shift thermometry. Magn. Reson. Med. 51(6), 1205–1211 (2004)

    Article  Google Scholar 

  27. G.H. Sørland et al., Determination of total fat and moisture content in meat using low field NMR. Meat Sci. 66(3), 543–550 (2004)

    Article  Google Scholar 

  28. A. Pramanik, ELECTROMAGNETISM: Theory and Applications (PHI Learning, 2008)

    Google Scholar 

  29. L.E. Drain, The broadening of magnetic resonance lines due to field inhomogeneities in powdered samples. Proc. Phys. Soc. 80(6), 1380 (1962)

    Article  CAS  Google Scholar 

  30. J.S. Murday, R.M. Cotts, Self-diffusion coefficient of liquid lithium. J. Chem. Phys. 48(11), 4938–4945 (1968)

    Article  CAS  Google Scholar 

  31. J. Zhong, R.P. Kennan, J.C. Gore, Effects of susceptibility variations on NMR measurements of diffusion. J. Magn. Reson. (1969) 95(2), 267–280 (1991)

    Google Scholar 

  32. J.R. Kärger, M. Douglas, Diffusion in Zeolites and other Microporous solids (Wiley-Intersciense, New York, 1992)

    Google Scholar 

  33. J. Kärger, F. Stallmach, NMR diffusion studies of molecules in nanoporous materials, in Magnetic Resonance in Colloid and Interface Science, eds. by J. Fraissard, O. Lapina (Springer, Netherlands, 2002), pp. 57–70

    Google Scholar 

  34. M.D. Hurlimann et al., Restricted diffusion in sedimentary rocks. Determination of surface-area-to-volume ratio and surface relaxivity. J. Magn. Reson. Ser. A 111(2), 169–178 (1994)

    Article  Google Scholar 

  35. M. Valtier, F. Humbert, D. Canet, Maps of self-diffusion coefficients by radiofrequency field gradient NMR microscopy. J. Magn. Reson. 141(1), 7–17 (1999)

    Article  CAS  Google Scholar 

  36. W.E. Maas, F.H. Laukien, D.G. Cory, Gradient, high resolution, magic angle sample spinning NMR. J. Am. Chem. Soc. 118(51), 13085–13086 (1996)

    Article  CAS  Google Scholar 

  37. J.G. Seland et al., Diffusion measurements at long observation times in the presence of spatially variable internal magnetic field gradients. J. Magn. Reson. 146(1), 14–19 (2000)

    Article  CAS  Google Scholar 

  38. L.L. Latour et al., Pore-size distributions and tortuosity in heterogeneous porous media. J. Magn. Reson. Ser. A 112(1), 83–91 (1995)

    Article  CAS  Google Scholar 

  39. P. Mörters, et al., Brownian Motion (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  40. A. Jerschow, N. Müller, Convection compensation in gradient enhanced nuclear magnetic resonance spectroscopy. J. Magn. Reson. 132(1), 13–18 (1998)

    Article  CAS  Google Scholar 

  41. N.K. Bar et al., Pitfalls in PFG NMR self-diffusion measurements with powder samples. J. Magn. Reson. Ser. A 113(2), 278–280 (1995)

    Article  Google Scholar 

  42. J. Stepišnik, Validity limits of Gaussian approximation in cumulant expansion for diffusion attenuation of spin echo. Physica B 270(1–2), 110–117 (1999)

    Article  Google Scholar 

  43. P.P. Mitra, B.I. Halperin, Effects of finite gradient-pulse widths in pulsed-field-gradient diffusion measurements. J. Magn. Reson. Ser. A 113(1), 94–101 (1995)

    Article  CAS  Google Scholar 

  44. P.P. Mitra, P.N. Sen, L.M. Schwartz, Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys. Rev. B 47(14), 8565–8574 (1993)

    Article  Google Scholar 

  45. E.J. Fordham, P.P. Mitra, L.L. Latour, Effective diffusion times in multiple-pulse PFG diffusion measurements in porous media. J. Magn. Reson. Ser. A 121(2), 187–192 (1996)

    Article  CAS  Google Scholar 

  46. G.H. Sørland, Short-time PFGSTE diffusion measurements. J. Magn. Reson. 126(1), 146–148 (1997)

    Article  Google Scholar 

  47. L.Z. Wang, A. Caprihan, E. Fukushima, The narrow-pulse criterion for pulsed-gradient spin-echo diffusion measurements. J. Magn. Reson. Ser. A 117(2), 209–219 (1995)

    Article  CAS  Google Scholar 

  48. L. Gjerdåker, G.H. Sørland, D.W. Aksnes, Application of the short diffusion time model to diffusion measurements by NMR in microporous crystallites. Microporous Mesoporous Mater. 32(3), 305–310 (1999)

    Article  Google Scholar 

  49. I. Zupancic, J. Pirs, Coils producing a magnetic field gradient for diffusion measurements with NMR. J. Phys. E: Sci. Instrum. 9(1), 79 (1976)

    Article  Google Scholar 

  50. E. Weber, Electromagnetic Fields. Theory and Application (Chapman & Hall, London, New York, 1950)

    Google Scholar 

  51. B. Spain, M.G. Smith, Functions of Mathematical Physics (Van Nostrand Reinhold Co, 1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Humborstad Sørland .

3.6 Appendix: Generating a Linear Magnetic Field Gradient Along an Axis

3.6 Appendix: Generating a Linear Magnetic Field Gradient Along an Axis

To be able to build a set of coils that generates a magnetic field gradient , one must evaluate the magnetic field, using the following two approaches

  • Starting with the law of Biot-Savart [28], and make a Taylor expansion of the magnetic field

  • $$ \vec{H} = \frac{I}{4\pi }\int {\frac{{d\vec{s} \times \vec{r}}}{{r^{3} }}} $$
    (3.25)

    where ds is a small vector element of the conducting rod, and I is the current passing through it

  • Starting with the magnetic vector potential

    $$ \vec{H} = \frac{1}{{\mu_{0} }}\nabla \times \vec{A} $$
    (3.26)

The first approach will be used to evaluate the magnetic field from a quadropolar coil (applied in low field NMR systems comprising permanent magnets), while the second approach will be used to evaluate the field from a set of circular coils (anti-Hemlholz coils used in high field NMR comprising superconducting magnets)

3.1.1 3.6.1 Magnetic Field Gradients Generated by a Quadropolar Coil

For an infinitely long conducting rod, the magnetic field in the x-direction is written

$$ H_{x} = \frac{I}{4\pi }\left[ {\int\limits_{ - \infty }^{\infty } {\frac{(b - y)dz - zdy}{{\left[ {z^{2} + (a - x)^{2} + (b - y)^{2} } \right]^{3/2} }}} } \right] $$
(3.27)

The conductor is located along the z-axis, thus dy = 0. By substituting c = [(a − x)2 + (b − y)2]1/2 and x = c tanθ, and recognizing that equation is an even function of z, the magnetic field is found to be [49]

$$ H_{x} = \frac{I}{4\pi }{Re}\left[ {\frac{1}{(a + ib) - (x + iz)}} \right] $$
(3.28)

Here i denotes the imaginary number, and Re means that the real part of the expression yields the magnetic field. When positioning 4 infinitely long conducting rods as shown in Fig. 3.30, a quadropolar coil is produced. Substitution of ς = x + iy and re(iϕ) = a + ib leads to the following relation for one conducting rod

$$ H_{x} = \frac{I}{2\pi }{Re}\left[ {\frac{1}{{re^{(i\phi )} - \zeta }}} \right] $$
(3.29)

Then applying a Taylor expansion ((ς/r) < 1)

$$ H_{x} = \frac{I}{2\pi r}{Re}\sum\limits_{n = 0}^{\infty } {\left( {\frac{\zeta }{r}} \right)}^{n} e^{( - i(n + 1)\phi )} $$
(3.30)

For the 4 conductors with current polarity as shown in Fig. 3.28, the resulting magnetic field is written

$$ H_{x} = \frac{I}{2\pi r}{Re}\sum\limits_{n = 0}^{\infty } {\left( {\frac{\zeta }{r}} \right)}^{n} \left[ {e^{ - i(n + 1)(\phi )} - e^{ - i(n + 1)(\phi + \pi /2)} + e^{ - i(n + 1)(\phi + \pi )} - e^{ - i(n + 1)(\phi + 3\pi /2)} } \right] $$
(3.31)

When performing the summation, the nonzero contributions are for n = 1, 5, 9 …

$$ H_{x} = \frac{I}{2\pi r}{Re}\left[ {4 \cdot \left( {\left( {\frac{\zeta }{r}} \right)e^{ - 2i\phi } + \left( {\frac{\zeta }{r}} \right)^{5} e^{ - 6i\phi } + \left( {\frac{\zeta }{r}} \right)^{9} e^{ - 10i\phi } + \cdots } \right)} \right] $$
(3.32)

In the area where ((ς/r) ≪ 1), the dominating contribution will be the linear one. Substitution of ς with x + iy and e−2iϕ with cos2ϕ − i sin2ϕ, and neglecting the imaginary terms, the magnetic field is written

$$ H_{x} = \frac{2I}{{\pi r^{2} }}(x\cos 2\phi + y\sin 2\phi ) $$
(3.33)

By choosing the right ϕ, the desired linear magnetic field gradient can be set to be either in the x or y-direction [49].

Fig. 3.30
figure 30

A quadropolar coil as seen from above

3.1.2 3.6.2 Magnetic Field Gradients Generated by an Anti-helmholz Coil

When calculating the magnetic field from a circular current loop, it is convenient to use spherical coordinate system. In the following the spherical coordinates will be used to evaluated the magnetic field from an anti-Helmholz coil , starting with the vector potential B = ∇ × A. For a spherical system the vector potential reduces to one component, Aϕ, which is parallel with the direction of the current [50]. The area in which we are interested in, close to the z-axis and the junction of the axes, is without any current sources, so the differential equation for Aϕ is written (Fig. 3.31)

$$ \nabla \times \nabla \times A_{\phi } = \frac{1}{r}\left( {\frac{{\partial^{2} }}{{\partial r^{2} }}(rA_{\phi } ) + \frac{\partial }{r\partial \theta }\left[ {\frac{{\partial \sin \theta A_{\phi } }}{\sin \theta \partial \theta }} \right]} \right) = 0 $$
(3.34)

The solution to this equation involves separation of the variables

$$ A_{\phi } (r,\theta ) = R(r){\Theta} (\theta ) $$
(3.35)

The solution of the radial part is written

$$ R(r) = \sum\limits_{n} {\left[ {C_{1n} r^{n} + C_{2n} r^{ - (n + 1)} } \right]} $$
(3.36)

The differential equation for the angular part is written

$$ \frac{\partial }{\partial \theta }\left[ {\frac{\partial }{\sin \theta \partial \theta }(\sin \theta {\Theta} )} \right] = - n(n + 1){\Theta} $$
(3.37)

Performing the partial derivation and making the substitution u = cosθ the equation is on the form of associated Legendre functions of the order n and degree 1 [51].

$$ \frac{\partial }{\partial u}\left[ {(1 - u^{2} )\frac{{\partial {\Theta} }}{\partial u}} \right] + \left[ {n(n + 1) - (1 - u^{2} )^{ - 1} } \right]{\Theta} = 0 $$
(3.38)

Thus the general solution to the vector potential Aϕ is written

$$ A_{\phi } = \sum\limits_{n} {\left( {C_{1n} r^{n} + C_{2n} r^{ - (n + 1)} } \right)} P_{n\cos \theta }^{1} $$
(3.39)

The magnetic field can now be found

$$ H_{r} = \frac{1}{{\mu_{0} }}\frac{{\partial \sin \theta A_{\phi } }}{r\sin \theta \partial \theta }\sum\limits_{n} {n(n + 1)(C_{1n} r^{n - 1} + C_{2n} r^{ - (n + 2)} )} P_{n\cos \theta } $$
(3.40)
$$ H_{\theta } = - \frac{1}{{\mu_{0} }}\frac{{\partial (rA_{\phi } )}}{r\partial r}\sum\limits_{n} {\left( {(n + 1)C_{1n} r^{n - 1} - nC_{2n} r^{ - (n + 2)} } \right)} P_{n\cos \theta }^{1} $$
(3.41)

These equations are generally valid for a symmetric magnetic field, i.e. Aϕ parallel to the direction of the current. To find the magnetic field from a current loop it is convenient to start with the expressions in (3.40) and (3.41) and the constraints at r = c (see Fig. 3.32).

Fig. 3.31
figure 31

Lines of force from a current loop

Fig. 3.32
figure 32

Boundary conditions

If the total current in the loop is I, then Kϕ = I/(c dθ). The distance from the centre to the loop is c, a is the radius of the current loop, and dθ is an infinitesimal change in θ (the current loop is assumed to be infinitely thin). The first condition (H r1  = H r2 ) produces a relation between C1n and C2n

$$ C_{1n} c^{n - 1} = - C_{2n} c^{ - (n + 2)} $$
(3.42)

For the second condition, H θ1 − H θ2 = μK ϕ , the K ϕ is expanded in an orthogonal set of associated Legendre functions \( P_{n\cos \theta }^{1} \)

$$ K_{\phi } = \sum\limits_{n} {D_{n} P_{n\cos \theta }^{1} } $$
(3.43)

The coefficients Dn are found using

$$ N_{n} (1)D_{n} = \int\limits_{\theta = 0}^{\pi } {K_{\phi } } P_{n\cos \theta }^{1} \sin \theta d\theta \approx \frac{{IP_{n\cos \alpha }^{1} \sin \alpha }}{c} $$
(3.44)

where

$$ N_{n} (1) = \int\limits_{\cos \theta = - 1}^{\cos \theta = + 1} {P_{n\cos \theta }^{1} } P_{n\cos \theta }^{1} d\cos \theta = \frac{2(n + 1)!}{(2n + 1)(n - 1)!} $$
(3.45)

C1n and C2n are then found using the second condition, H θ1 − H θ2 = μK ϕ , and the magnetic field is finally written

$$ \begin{array}{*{20}l} {H_{r} = \frac{I}{2c}\sin \alpha \sum\limits_{n = 1}^{\infty } {\left( \frac{r}{c} \right)^{n - 1} P_{n\cos \alpha }^{1} P_{n\cos \theta } } ,} \hfill & {r < c} \hfill \\ {H_{r} = - \frac{I}{2c}\sin \alpha \sum\limits_{n = 1}^{\infty } {\left( \frac{c}{r} \right)^{n + 2} P_{n\cos \alpha }^{1} P_{n\cos \theta } } ,} \hfill & {r > c} \hfill \\ {H_{\theta } = - \frac{I}{2c}\sin \alpha \sum\limits_{n = 1}^{\infty } {\left( \frac{r}{c} \right)^{n - 1} \frac{1}{n}P_{n\cos \alpha }^{1} P_{n\cos \theta }^{1} } ,} \hfill & {r < c} \hfill \\ {H_{\theta } = - \frac{I}{2c}\sin \alpha \sum\limits_{n = 1}^{\infty } {\left( \frac{c}{r} \right)^{n + 2} \frac{1}{n - 1}P_{n\cos \alpha }^{1} P_{n\cos \theta }^{1} } ,} \hfill & {r > c} \hfill \\ \end{array} $$
(3.46)

These equations are the starting point when aiming at generating a linear magnetic field in the centre of a coil configuration. The easiest way to generate such a field is to use two current loops separated by a certain distance and having current of opposite polarity. For c < r the magnetic field from the coil configuration shown in Fig. 3.33 is written

$$ \begin{array}{*{20}l} {H_{r} = + \frac{I}{2c}\sin \alpha \sum\limits_{n = 1}^{\infty } {\left( \frac{r}{c} \right)^{n - 1} P_{n\cos \alpha }^{1} P_{n\cos \theta } } \left( {1 - ( - 1)^{(n + 1)} } \right),} & {r < c} \\ {H_{\theta } = - \frac{I}{2c}\sin \alpha \sum\limits_{n = 1}^{\infty } {\left( \frac{r}{c} \right)^{n - 1} \frac{1}{n}P_{n\cos \alpha }^{1} P_{n\cos \theta }^{1} \left( {1 - ( - 1)^{n + 1)} } \right)} ,} & {r < c} \\ \end{array} $$
(3.47)

Due to the symmetry of the current loops, every second term in the summation will cancel as

$$ P_{n\cos (\pi - \alpha )}^{1} = ( - 1)^{(n + 1)} P_{n\cos \alpha }^{1} $$
(3.48)

The summation may then start from n = 2, and the first part of the magnetic field will then be proportional to r, while the second and first nonlinear part will go as r 3. This first nonlinear term can be eliminated by choosing cosα = (3/7)1/2. This is equivalent to letting the two current loops be separated by a distance ((3)1/2 · a). Then the expression for the magnetic field along the z-direction can be written

$$ H_{z} = + \frac{4I}{7a}\sum\limits_{n = 1}^{\infty } {\left( \frac{r}{a} \right)^{2n - 1} \frac{4}{7}^{{\frac{2n - 1}{2}}} P_{{2n\sqrt \frac{3}{7} }}^{1} } \left[ {P_{2n\cos \theta } \cos \theta - \frac{1}{2n}P_{2n\cos \theta}^{1} \sin \theta} \right] $$
(3.49)

The first order correction to H z along the z-axis (θ = 0) will go as (z/a)5.

Fig. 3.33
figure 33

The anti-Helmholz coil

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sørland, G.H. (2014). Experimental, Pitfalls and Suggested Solutions. In: Dynamic Pulsed-Field-Gradient NMR. Springer Series in Chemical Physics, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44500-6_3

Download citation

Publish with us

Policies and ethics