Skip to main content

Lie Algebras and Lie Groups

  • Chapter
  • First Online:
Book cover Lie Algebras and Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 891))

  • 4309 Accesses

Abstract

The relationship between Lie algebras and Lie groups is of great importance. Let the Lie algebra be g and the corresponding Lie group G. The relation is

$$\displaystyle{ \text{Lie algebra}\qquad g \ni X_{i}\mathrm{\ \ }(i = 1,\ldots,r) }$$
(4.1)
$$\displaystyle{ \text{Lie group}\qquad G \ni \exp \left (\sum _{i=1}^{r}\alpha _{ i}X_{i}\right ) }$$
(4.2)

where the α i ’s are the parameters of the group and the sum goes over the order of the group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alhassid, Y., Iachello, F., Gürsey, F.: Group theory of the Morse oscillator. Chem. Phys. Lett. 99, 27 (1983)

    Article  ADS  Google Scholar 

  • Bacry, H.: The de Sitter group L 4, 1 and the bound states of the hydrogen atom. Nuovo Cimento 41A, 222 (1966)

    Article  ADS  Google Scholar 

  • Baird, G.E., Biedenharn, L.C.: On the representations of semisinple Lie groups-II. J. Math. Phys. 4, 1449 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  • Bargmann, V.: Zur Theorie des Wassenstoffatoms. Z. Phys. 99, 576 (1936)

    Google Scholar 

  • Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann. Math. 48, 568 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  • Barut A.O.: Dynamical groups and their currents. Springer Tracts Mod. Phys. 50, 1 (1969)

    ADS  Google Scholar 

  • Barut, A.O., Böhm, A.: Dynamical groups and mass formulas. Phys. Rev. B 139, 1107 (1965)

    Article  ADS  Google Scholar 

  • Barut, A.O., Raçzka, R.: Theory of Group Representations and Applications. World Scientific, Singapore (1986)

    Book  MATH  Google Scholar 

  • Berezin, F.A.: An Introduction to Superanalysis. D. Riedel, Dordrecht (1987)

    Book  Google Scholar 

  • Bijker, R., Iachello, F., Leviatan, A.: Algebraic models of hadronic structure. I. Non strange baryons. Ann. Phys. (NY) 236, 69 (1994a)

    Article  Google Scholar 

  • Bijker, R., Leviatan, A.: Algebraic treatment of collective excitations in baryon spectroscopy. In: B. Gruber, B., Otsuka, T., (eds.) Symmetry in Science VII: Spectrum Generating Algebras and Dynamic Symmetries in Physics. Plenum Press, New York (1994b)

    Google Scholar 

  • Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer, New York (1985)

    Google Scholar 

  • Caprio, M.A.: Applications of the coherent state formalism to multiply excited states. J. Phys. A 38, 6385 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Cartan, E.: The Theory of Spinors. Hermann, Paris (1966)

    MATH  Google Scholar 

  • Cartan, E.: Sur la Structure des Groupes de Transformation Finis and Continus. Thése, Paris (1894)

    Google Scholar 

  • Cartan, E.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. France 54, 214 (1926); 55, 114 (1927)

    Google Scholar 

  • Casimir, H.: Über die Konstruktion einer zu den irreduzibelen Darstellung halbeinfacher kontinuerlichen Gruppen gehörigen Differential-gleichung. Proc. R. Akad. Amst. 34, 844 (1931)

    Google Scholar 

  • Cejnar, P., Iachello, F.: Phase structure of interacting boson models in arbitrary dimensions. J. Phys. A 40, 581 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Chaichian, M., Hagedorn, R.: Symmetry in Quantum Mechanics: From Angular Momentum to Supersymmetry. IOP, Philadelphia (1998)

    Book  Google Scholar 

  • Chen, J.-Q.: Group Representation Theory for Physicists. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  • Chen, J.-Q., Chen, B.-Q., Klein, A.: Factorization for commutators: the Wick theorem for coupled operators. Nucl. Phys. A 554, 61 (1993)

    Article  ADS  Google Scholar 

  • Cordero, P., Hojman, S.: Algebraic solution of a short-range potential problem. Lett. Nuovo Cimento 4, 1123 (1970)

    Article  Google Scholar 

  • Cornwell, J.F.: Group Theory in Physics: An Introduction. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  • De Shalit, A., Talmi, I.: Nuclear Shell Theory. Academic Press, New York (1963)

    Google Scholar 

  • de Swart, J.J.: The Octet Model and its Clebsch-Gordan Coefficients. Rev. Mod. Phys. 35, 916 (1963)

    Article  ADS  Google Scholar 

  • Dothan, Y., Gell-Mann, M., Ne’eman, Y.: Series of hadron levels as representations of non-compact groups. Phys. Lett. 17, 148 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  • Duistermaat, J.J., Kolk, J.A.C.: Lie Groups. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  • Dynkin, E.B.: The structure of semisimple Lie algebras. Usp. Mat. Nauk (N.S.) 2, 59 (1947). Translated in Am. Math. Soc. Transl. (1) 9, 308 (1962)

    Google Scholar 

  • Elliott, J.P.: Collective motion in the nuclear shell model. I. Classification scheme for states of mixed configurations. Proc. R. Soc. A245, 128 (1958)

    Google Scholar 

  • Flowers, R.H.: Studies in j–j coupling. I. Classification of nuclear and atomic states. Proc. R. Soc. A212, 248 (1952)

    Google Scholar 

  • Fock, V.A.: Zur theorie des Wassenstoffatoms. Z. Phys. 98, 145 (1935)

    Article  ADS  Google Scholar 

  • Frank, A., van Isacker, P.: Algebraic Methods in Molecular and Nuclear Structure Physics. Wiley, New York (1994)

    MATH  Google Scholar 

  • Franzini, P., Radicati, L.A.: On the validity of the supermultiplet model. Phys. Lett. 6, 32 (1963)

    Article  Google Scholar 

  • French, J.B.: Multipole and sum-rule methods in spectroscopy. In: Bloch, C., (ed.) Proceedings of the International School of Physics “Enrico Fermi”, Course XXXVI, p. 278. Academic Press, New York (1966)

    Google Scholar 

  • Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, New York (1991)

    MATH  Google Scholar 

  • Gel’fand, I.M., Cetlin, M.L.: Finite-dimensional representations of a group of unimodular matrices. Dokl. Akad. Nauk SSSR 71, 8 & 825 (1950)

    MathSciNet  MATH  Google Scholar 

  • Gel’fand, I.M., Cetlin, M.L.: Finite-dimensional representations of groups of orthogonal matrices. Dokl. Akad. Nauk SSSR 71, 1017 (1950)

    MathSciNet  MATH  Google Scholar 

  • Gell-Mann, M.: Symmetries of baryons and mesons. Phys. Rev. 125, 1067 (1962)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Georgi, H.: Lie Algebras in Particle Physics. Perseus Books, Reading (1962)

    Google Scholar 

  • Gilmore, R.: Lie Groups, Lie Algebras and Some of Their Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  • Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. Addison-Wesley, San Francisco (2002)

    Google Scholar 

  • Gürsey, F., Radicati, L.A.: Spin and unitary spin independence of strong interactions. Phys. Rev. Lett. 13, 173 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  • Hall, B.C.: Lie Groups, Lie Algebras, and Representations. Springer, New York (2003)

    Book  MATH  Google Scholar 

  • Hamermesh, M.: Group Theory and its Applications to Physical Problems. Addison-Wesley, Reading (1962)

    Google Scholar 

  • Hermann, R.: Lie Groups for Physicists. W.A. Benjamin, New York (1966)

    MATH  Google Scholar 

  • Hladik, J.: Spinors in Physics. Translated from the French edition Spineurs en Physique. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Text in Mathematics. Springer, New York (1972)

    Book  MATH  Google Scholar 

  • Hwa, R.C., Nuyts, T.: Group embedding for the harmonic oscillator. Phys. Rev. 145, 1188 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  • Iachello, F.: Dynamic symmetries in nuclei. In: Böhm, A. (ed.) Group Theoretical Methods in Physics. Lange Springer, Berlin (1979)

    Google Scholar 

  • Iachello, F.: Algebraic theory of the three-body problem. In: Gruber, B., (ed.) Symmetries in Science VIII. Plenum Press, New York (1995)

    Google Scholar 

  • Iachello, F., Arima, A.: The Interacting Boson Model. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  • Iachello, F., Levine, R.D.: Algebraic Theory of Molecules. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Iachello, F., van Isacker, P.: The Interacting Boson Fermion Model. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  • Iachello, F., Oss, S.: Algebraic Model of Bending Vibrations of Complex Molecules. Chem. Phys. Lett. 205, 285 (1993)

    Article  ADS  Google Scholar 

  • Iachello, F., Oss, S.: Algebraic approach to molecular spectra: two-dimensional problems. J. Chem. Phys. 104, 6956 (1996)

    Article  ADS  Google Scholar 

  • Jacobson, N.: Lie Algebras. Dover, New York (1979). Reprinted from General Publishing Company, Toronto, Ontario, Canada (1962)

    Google Scholar 

  • Jauch, J.M., Hill, E.H.: On the problem of degeneracy in quantum mechanics. Phys. Rev. 57, 641 (1940)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kirillov, A.A.: Elementy Teorii Predstavlenii. Nauka, Moscow (1972). Translated in Elements of the Theory of Representation. Springer, Berlin (1976)

    Google Scholar 

  • Kirillov, A., Jr.: An Introduction to Lie Groups and Lie Algebras. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  • Killing, W.: Die Zusammensetzung der Stetigen Endlichen Transformationgruppen, I–IV. Math. Ann. 31, 252 (1888); 33, 1 (1889a); 34, 57 (1889b); 36, 161 (1890)

    Google Scholar 

  • Lie, S., Scheffers, G.: Vorlesungen über Kontinuerliche Gruppen. Leipzig (1893)

    Google Scholar 

  • Lipkin, H.J.: Lie Groups for Pedestrians. Dover, Mineola (2002). Reprinted from North-Holland Publishing Company, Amsterdam (1966)

    Google Scholar 

  • Messiah, A.: Quantum Mechanics. Wiley, New York. Translated from the French edition, Dunod, Paris (1958)

    Google Scholar 

  • Okubo, S.: Note on unitary symmetry in strong interactions. Prog. Theor. Phys. 27, 949 (1962)

    Article  MATH  ADS  Google Scholar 

  • Pauli, W.: Über das Wassenstoffspektrum von Standpunkt der neuen Quantenmechanik. Z. Phys. 36, 336 (1926)

    Article  MATH  ADS  Google Scholar 

  • Perelomov, A.M.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  • Perelomov, A.M., Popov, V.S.: Casimir Operators for u(n) and su(n). Sov. J. Nucl. Phys. 3, 676 (1966a)

    MathSciNet  Google Scholar 

  • Perelomov, A.M., Popov, V.S.: Casimir operators of orthogonal and symplectic groups. Sov. J. Nucl. Phys. 3, 819 (1966b)

    MathSciNet  Google Scholar 

  • Racah, G.: Group Theory and Spectroscopy, Mimeographed Lecture Notes. Princeton, New Jersey (1951). Reprinted in Springer Tracts in Modern Physics 37, 28 (1965)

    Google Scholar 

  • Racah, G.: Theory of complex spectra-IV. Phys. Rev. 76, 1352 (1949)

    Article  MATH  ADS  Google Scholar 

  • Santopinto, E., Giannini, M., Iachello, F.: Algebraic spproach to the hyper-coulomb problem. In: Gruber, B., (ed.) Symmetry in Science VIII. Plenum Press, New York (1995)

    Google Scholar 

  • Sattinger, D.H., Weaver, O.L.: Lie Groups, Lie Algebras with Applications to Physics, Geometry, and Mechanics. Springer, New York (1986)

    Book  Google Scholar 

  • Schwinger, J.: On angular momentum. In: Biedenharn, L.C., van Dam, H., (eds.) Quantum Theory of Angular Momentum, p. 229. Academic Press, New York (1965)

    Google Scholar 

  • Serre, J-P.: Lie Algebras and Lie Groups. W.A. Benjamin, New York (1965)

    MATH  Google Scholar 

  • Slansky, R.: Group theory for unified model building. Phys. Rep. 79, 1 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  • Sudarshan, E.C.G., Mukunda, N., O’Raifeartaigh, L.: Group theory of the Kepler problem. Phys. Lett. 19, 322 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  • van der Waerden, B.L.: Die Gruppentheoretische Methode in der Quantenmechanik. Math. Zeitschr. 37, 446 (1933)

    Article  Google Scholar 

  • van Roosmalen, O.S.: Algebraic Description of Nuclear and Molecular Rotation-Vibration Spectra. Ph.D. Thesis, University of Groningen, The Netherlands (1982)

    Google Scholar 

  • Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  • Weyl, H.: Theorie der Darstellung kontinuerlichen halbeinfacher Gruppen durch lineare Transformationen, I–III. Math. Zeitschr. 23, 271 (1925); 24, 328 & 377 (1926)

    Google Scholar 

  • Wybourne, B.G.: Classical Groups for Physicists. Wiley, New York (1974)

    MATH  Google Scholar 

  • Zhang, W., Feng, D.H., Gilmore, R.: Coherent states: theory and some applications. Rev. Mod. Phys. 62, 867 (1990)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iachello, F. (2015). Lie Algebras and Lie Groups. In: Lie Algebras and Applications. Lecture Notes in Physics, vol 891. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44494-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44494-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44493-1

  • Online ISBN: 978-3-662-44494-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics