Skip to main content

Systematic Analysis of Homologous Tandem Repeat Family in the Human Genome

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 452))

  • 770 Accesses

Abstract

The vast majority of the human genome consists of repetitive elements that form many complex but highly-ordered patterns. In particular, tandem repeats, whose repeat units are placed adjacent to each other, form highly structured patterns in the human genome when homologous tandem repeats are close together. Herein, the structure of the homologous tandem repeat family (HTRF) is assessed using systematic analysis. In the proposed system for analyzing HTRF, the original tandem repeat units are derived using the characteristics of homology of HTRF, and represented in a diagram in order to show the structure of HTRF easily. The analysis results of the four HTRFs in the human genome are shown here and the proposed algorithm may be seen to be very efficient for analyzing HTRF via the comparison of three conventional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazazian, H.H.: Mobile elements: drivers of genome evolution. Sci. 303, 1626–2632 (2004)

    Article  Google Scholar 

  2. Prak, E.T., Kazazian, H.H.: Mobile elements and the human genome. Nat. Rev. Genet. 1, 134–144 (2000)

    Article  Google Scholar 

  3. Sinden, R.R.: Biological implications of the DNA structures associated with disease-causing triplet repeats. Am. J. Hum. Genet. 64, 346–353 (1999)

    Article  Google Scholar 

  4. Christian, M., Dennis, J., John, M.: STRBase: a short tandem repeat DNA database for the human identity testing community. Nucleic Acids Res. 29, 320–322 (2001)

    Article  Google Scholar 

  5. Hauth, A.M., Joseph, D.A.: Beyond tandem repeats: complex pattern structures and distant regions of similarity. Bioinform. 18, S31–S37 (2002)

    Article  Google Scholar 

  6. Chung, B.I., Lee, K.H., Shin, K.S., Kim, W.C., Kwon, D.N., You, R.N., Lee, Y.K., Cho, K., Cho, D.H.: REMiner: a tool for unbiased mining and analysis of repetitive elements and their arrangement structures of large chromosomes. Genomics 98, 381–389 (2011)

    Article  Google Scholar 

  7. Kim, W.C., Lee, K.H., Shin, K.S., You, R.N., Lee, Y.K., Cho, K., Cho, D.H.: REMiner-II: A tool for rapid identification and configuration of repetitive element arrays from large mammalian chromosomes as a single query. Genomics 100, 131–140 (2012)

    Article  Google Scholar 

  8. Benson, G.: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999)

    Article  Google Scholar 

  9. Sharma, D., Issac, B., Raghava, G.P., Ramaswamy, R.: Spectral repeat finder (SRF): identification of repetitive sequences using fourier transformation. Bioinform. 20, 1405–1412 (2004)

    Article  Google Scholar 

  10. Buchner, M., Janjarasjitt, S.: Detection and visualization of tandem repeats in DNA sequences. IEEE Trans. Signal Process. 51, 2280–2287 (2003)

    Article  MathSciNet  Google Scholar 

  11. Brodzik, A.K.: Quaternionic periodicity transform: an algebraic solution to the tandem repeat detection problem. Bioinform. 23, 694–700 (2007)

    Article  Google Scholar 

  12. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000)

    Article  Google Scholar 

  13. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput. Biol. 1, 337–348 (1994)

    Article  Google Scholar 

  14. Just, W.: Computational complexity of multiple sequence alignment with SP-score. J. Comput. Biol. 8, 615–623 (2001)

    Article  Google Scholar 

  15. Humberto, C., David, L.: The multiple sequence alignment problem in biology. SIAM J. Appl. Math. 48, 1073–1082 (1998)

    Google Scholar 

  16. Lipman, D.J., Altschul, S.F., Kececioglu, J.D.: A tool for multiple sequence alignment. Proc. Natl. Acad. Sci. U.S.A. 86, 4412–4415 (1989)

    Article  Google Scholar 

  17. Edgar, R.C., Myers, E.W.: PILER: identification and classification of genomic repeats. Bioinform. 21, i152–i158 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Chan Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, WC., Cho, DH. (2014). Systematic Analysis of Homologous Tandem Repeat Family in the Human Genome. In: Fernández-Chimeno, M., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2013. Communications in Computer and Information Science, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44485-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44485-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44484-9

  • Online ISBN: 978-3-662-44485-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics