Fundamentals of Clocked, Regenerative Comparators

  • Bernhard GollEmail author
  • Horst Zimmermann
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 50)


The fastest ADC structure is the flash ADC, where in principle for a resolution of \(N\) bits \(2^{N}-1\) comparators are arranged in parallel for fast analog to digital conversion.


  1. 1.
    H. Klar, Integrierte Digitale Schaltungen MOS/BICMOS (Springer, Berlin, 1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    V. Srinivas, S. Pavan, A. Lachhwani, N. Sasidhar, A distortion compensating flash anaolog-to-digital conversion technique. IEEE J. Solid-State Circuits 41(9), 1959–1969 (2006)CrossRefGoogle Scholar
  3. 3.
    B. Goll, H. Zimmermann, A Low Power 1.4 GSample/s Comparator for Flash-ADCs in 120 nm CMOS Technology, Austrochip 2004, pp. 39–42 (2005)Google Scholar
  4. 4.
    K. Uyttenhove, M. Steyaert, A CMOS 6-bit, 1 GHz ADC for IF sampling applications. IEEE MTT-S Int. Microwave Symp. Digest 3, 2131–2134 (2001)Google Scholar
  5. 5.
    K. Cornelissens, P. Reynaert, M. Steyaert, A 0.18 \(\upmu \)m CMOS switched capacitor voltage modulator. IEEE European Solid-State Circuits Conference, pp. 375–378 (2005)Google Scholar
  6. 6.
    P.M. Figueiredo, J.C. Vital, Low kickback noise techniques for CMOS latched comparators. IEEE Int. Symp. Circuits Syst. 1, 537–540 (2004)Google Scholar
  7. 7.
    R. van de Plasche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters (Kluwer Academic, Boston, 2003)CrossRefGoogle Scholar
  8. 8.
    M. Frey, H.-A. Loeliger, On flash A/D-converters with low-precision comparators. IEEE International Symposium on Circuits and Systems, pp. 3926–3929 (2006)Google Scholar
  9. 9.
    C. Sandner, M. Clara, A. Santner, T. Hartnig, F. Kuttner, A 6bit, 1.2GSps low-power flash-ADC in 0.13\(\mu \)m digital CMOS, design, automation and test in europe conference and exhibition (DATE’05), Vol. 3, pp. 223–226 (2005)Google Scholar
  10. 10.
    H. Dang, M. Sawan, Y. Savaria, A novel approach for implementing ultra-high speed flash ADC using MCML circuits. IEEE Int. Symp. Circuits Syst. 6, 6158–6161 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Sheikhaei, S. Mirabbasi, A. Ivanov, An encoder for a 5GS/s 4-bit flash ADC in 0.18\(\mu \)m CMOS. IEEE canadian conference on electrical and computer engineering, pp. 698–701 (2005)Google Scholar
  12. 12.
    T. Kobayashi, K. Nogami, T. Shirotori, Y. Fujimoto, A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE J. Solid-State Circuits 28(4), 523–527 (1993)CrossRefGoogle Scholar
  13. 13.
    P. Uthaichana, E. Leelarasmee, Low power CMOS dynamic latch comparators. IEEE conference on convergent technologies for Asia-pacific region (TENCON), vol.2, pp. 605–608 (2003)Google Scholar
  14. 14.
    B. Wicht, Current Sense Amplifiers for Embedded SRAM in High-Performance System-on-a-Chip Designs (Springer, Berlin, 2003)Google Scholar
  15. 15.
    L. Samid, P. Volz, Y. Manoli, A dynamic analysis of a latched CMOS comparator. IEEE international symposium on circuits and systems, vol. 1, pp. 181–184 (2004)Google Scholar
  16. 16.
    L. Sumanen, M. Waltari, V. Hakkarainen, K. Halonen, CMOS dynamic comparators for pipeline A/D converters. IEEE international symposium on circuits and systems, vol. 1, pp. 157–160 (2002)Google Scholar
  17. 17.
    F. Maloberti, Analog Design for CMOS VLSI Systems (Kluwer Academic, Boston, 2001)Google Scholar
  18. 18.
    P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design (Oxford University Press Inc, New York, 2002)Google Scholar
  19. 19.
    A. Baschirotto, II. Analog Switches, Lecture Notes, Dipartimento di Ingegneria dell’ Innovazione (Universita’ degli Studi di Lecce, Lecce, 2003)Google Scholar
  20. 20.
    R. Gregorian, Introduction to CMOS Op-Amps and Comparators A Wiley-Interscience Publication (Wiley, New York, 1999)Google Scholar
  21. 21.
    J.-T. Wu, B.A. Wooley, A 100-MHz pipelined CMOS comparator. IEEE J. Solid-State Circuits 23(6), 1379–1385 (1988)CrossRefGoogle Scholar
  22. 22.
    W.M.C. Sansen, Analog Design Essentials (Springer, Berlin, 2006)Google Scholar
  23. 23.
    P.M. Figueiredo, J.C. Vital, Kickback noise reduction techniques for CMOS latched comparators. IEEE Trans. Circuits Syst. II 53(7), 541–545 (2006)CrossRefGoogle Scholar
  24. 24.
    J. Lohstroh, Worst-case static noise margin criteria for logic circuits and their mathematical equivalence. IEEE J. Solid-State Circuits 18(6), 803–807 (1983)CrossRefGoogle Scholar
  25. 25.
    E. Seevinck, F.J. List, J. Lohstroh, Static-noise margin analysis of MOS SRAM cells. IEEE J. Solid-State Circuits 22(5), 748–754 (1987)CrossRefGoogle Scholar
  26. 26.
    A.J. Bhavnagarwala, X. Tang, J.D. Meindl, The impact of intrinsic device fluctuations on CMOS SRAM cell stability. IEEE J. Solid-State Circuits 36(4), 658–665 (2001)CrossRefGoogle Scholar
  27. 27.
    A. Nikoozadeh, B. Murmann, An analysis of latch comparator offset due to load capacitor mismatch. IEEE Trans. Circuits Syst. II 53(12), 1398–1402 (2006)CrossRefGoogle Scholar
  28. 28.
    B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2001)Google Scholar
  29. 29.
    M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1440 (1989)CrossRefGoogle Scholar
  30. 30.
    B. Razavi, B.A. Wooley, Design techniques for high-speed, high-resolution comparators. IEEE J. Solid-State Curcuits 27(12), 1916–1926 (1992)CrossRefGoogle Scholar
  31. 31.
    K.-L.J. Wong, C.-K.K. Yang, Offset compensation in comparators with minimum input-referred supply noise. IEEE J. Solid-State Circuits 39(5), 837–840 (2004)CrossRefGoogle Scholar
  32. 32.
    E.L. Wong, P.A. Abshire, M.H. Cohen, Floating gate comparator with automatic offset manipulation functionality. IEEE international symposium on circuits and systems, vol. 1, pp. 529–532 (2004)Google Scholar
  33. 33.
    E. Rodriguez-Villegas, A 0.9V offset compensated FGMOS comparator, IEEE international symposium on circuits and systems, vol. 3, pp. 2160–2163 (2005)Google Scholar
  34. 34.
    D.G. Chen, A. Bermak, A low-power dynamic comparator with digital calibration for reduced offset mismatch. IEEE international symposium on circuits and systems, pp. 1283–1286 (2012)Google Scholar
  35. 35.
    J. Lu, J. Holleman, A low-power high-precision comparator with time-domain bulk-tuned offset cancellation. IEEE Trans. Circuits Syst. I 60(5), 1158–1167 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Y.L. Wong, M.H. Cohen, P.A. Abshire, A 1.2-GHz comparator with adaptable offset in 0.35-\(\upmu \)m CMOS. IEEE Trans. Circuits Syst. I 55(9), 2584–2593 (2008)MathSciNetCrossRefGoogle Scholar
  37. 37.
    J. He, S. Zhan, D. Chen, R.L. Geiger, Analyses of static and dynamic random offset voltages in dynamic comparators. IEEE Trans. Circuits Syst. I 56(5), 911–919 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
    H.J.M. Veendrick, The behaviour of flip-flops used as synchronizers and prediction of their failure rate. IEEE J. Solid-State Circuits 15(2), 169–176 (1980)CrossRefGoogle Scholar
  39. 39.
    H. Weinrichter, F. Hlawatsch, Stochastische Grundlagen nachrichtentechnischer Signale (Springer, New York, 1991)CrossRefGoogle Scholar
  40. 40.
    P.M. Figueiredo, Comparator metasability in the presence of noise. IEEE Trans. Circuits Syst. I 60(5), 1286–1299 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    P. Nuzzo, F. De Bernardinis, P. Terreni, G. Van der Plas, Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans. Circuits Syst. I 55(6), 1441–1454 (2008)MathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Park, M.P. Flynn, A regenerative comparator structure with integrated inductors. IEEE Trans. Circuits Syst. I 53(8), 1704–1711 (2006)CrossRefGoogle Scholar
  43. 43.
    A. Boni, C. Morandi, S. Padoan, A 2.5-V BiCMOS comparator with current-mode interpolation. IEEE J. Solid-State Circuits 34(6), 892–897 (1999)CrossRefGoogle Scholar
  44. 44.
    A. Boni, G. Chiorboli, C. Morandi, Dynamic characterisation of high-speed latching comparators. IET Electron. Lett. 36(5), 402–404 (2000)CrossRefGoogle Scholar
  45. 45.
    B. Goll, H. Zimmermann, Simple creation of half and full frequency, inverted and non-inverted clock signals with maximum 10ps delay time differences in 120nm CMOS, Austrochip 2006, pp. 143–148 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Electrodynamics, Microwave and Circuit Engineering (EMCE)TU WienWienAustria

Personalised recommendations