Skip to main content

Fundamentals of Clocked, Regenerative Comparators

  • Chapter
  • First Online:
Comparators in Nanometer CMOS Technology

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 50))

  • 2432 Accesses

Abstract

The fastest ADC structure is the flash ADC, where in principle for a resolution of \(N\) bits \(2^{N}-1\) comparators are arranged in parallel for fast analog to digital conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Klar, Integrierte Digitale Schaltungen MOS/BICMOS (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  2. V. Srinivas, S. Pavan, A. Lachhwani, N. Sasidhar, A distortion compensating flash anaolog-to-digital conversion technique. IEEE J. Solid-State Circuits 41(9), 1959–1969 (2006)

    Article  Google Scholar 

  3. B. Goll, H. Zimmermann, A Low Power 1.4 GSample/s Comparator for Flash-ADCs in 120 nm CMOS Technology, Austrochip 2004, pp. 39–42 (2005)

    Google Scholar 

  4. K. Uyttenhove, M. Steyaert, A CMOS 6-bit, 1 GHz ADC for IF sampling applications. IEEE MTT-S Int. Microwave Symp. Digest 3, 2131–2134 (2001)

    Google Scholar 

  5. K. Cornelissens, P. Reynaert, M. Steyaert, A 0.18 \(\upmu \)m CMOS switched capacitor voltage modulator. IEEE European Solid-State Circuits Conference, pp. 375–378 (2005)

    Google Scholar 

  6. P.M. Figueiredo, J.C. Vital, Low kickback noise techniques for CMOS latched comparators. IEEE Int. Symp. Circuits Syst. 1, 537–540 (2004)

    Google Scholar 

  7. R. van de Plasche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters (Kluwer Academic, Boston, 2003)

    Book  Google Scholar 

  8. M. Frey, H.-A. Loeliger, On flash A/D-converters with low-precision comparators. IEEE International Symposium on Circuits and Systems, pp. 3926–3929 (2006)

    Google Scholar 

  9. C. Sandner, M. Clara, A. Santner, T. Hartnig, F. Kuttner, A 6bit, 1.2GSps low-power flash-ADC in 0.13\(\mu \)m digital CMOS, design, automation and test in europe conference and exhibition (DATE’05), Vol. 3, pp. 223–226 (2005)

    Google Scholar 

  10. H. Dang, M. Sawan, Y. Savaria, A novel approach for implementing ultra-high speed flash ADC using MCML circuits. IEEE Int. Symp. Circuits Syst. 6, 6158–6161 (2005)

    Article  Google Scholar 

  11. S. Sheikhaei, S. Mirabbasi, A. Ivanov, An encoder for a 5GS/s 4-bit flash ADC in 0.18\(\mu \)m CMOS. IEEE canadian conference on electrical and computer engineering, pp. 698–701 (2005)

    Google Scholar 

  12. T. Kobayashi, K. Nogami, T. Shirotori, Y. Fujimoto, A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE J. Solid-State Circuits 28(4), 523–527 (1993)

    Article  Google Scholar 

  13. P. Uthaichana, E. Leelarasmee, Low power CMOS dynamic latch comparators. IEEE conference on convergent technologies for Asia-pacific region (TENCON), vol.2, pp. 605–608 (2003)

    Google Scholar 

  14. B. Wicht, Current Sense Amplifiers for Embedded SRAM in High-Performance System-on-a-Chip Designs (Springer, Berlin, 2003)

    Google Scholar 

  15. L. Samid, P. Volz, Y. Manoli, A dynamic analysis of a latched CMOS comparator. IEEE international symposium on circuits and systems, vol. 1, pp. 181–184 (2004)

    Google Scholar 

  16. L. Sumanen, M. Waltari, V. Hakkarainen, K. Halonen, CMOS dynamic comparators for pipeline A/D converters. IEEE international symposium on circuits and systems, vol. 1, pp. 157–160 (2002)

    Google Scholar 

  17. F. Maloberti, Analog Design for CMOS VLSI Systems (Kluwer Academic, Boston, 2001)

    Google Scholar 

  18. P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design (Oxford University Press Inc, New York, 2002)

    Google Scholar 

  19. A. Baschirotto, II. Analog Switches, Lecture Notes, Dipartimento di Ingegneria dell’ Innovazione (Universita’ degli Studi di Lecce, Lecce, 2003)

    Google Scholar 

  20. R. Gregorian, Introduction to CMOS Op-Amps and Comparators A Wiley-Interscience Publication (Wiley, New York, 1999)

    Google Scholar 

  21. J.-T. Wu, B.A. Wooley, A 100-MHz pipelined CMOS comparator. IEEE J. Solid-State Circuits 23(6), 1379–1385 (1988)

    Article  Google Scholar 

  22. W.M.C. Sansen, Analog Design Essentials (Springer, Berlin, 2006)

    Google Scholar 

  23. P.M. Figueiredo, J.C. Vital, Kickback noise reduction techniques for CMOS latched comparators. IEEE Trans. Circuits Syst. II 53(7), 541–545 (2006)

    Article  Google Scholar 

  24. J. Lohstroh, Worst-case static noise margin criteria for logic circuits and their mathematical equivalence. IEEE J. Solid-State Circuits 18(6), 803–807 (1983)

    Article  Google Scholar 

  25. E. Seevinck, F.J. List, J. Lohstroh, Static-noise margin analysis of MOS SRAM cells. IEEE J. Solid-State Circuits 22(5), 748–754 (1987)

    Article  Google Scholar 

  26. A.J. Bhavnagarwala, X. Tang, J.D. Meindl, The impact of intrinsic device fluctuations on CMOS SRAM cell stability. IEEE J. Solid-State Circuits 36(4), 658–665 (2001)

    Article  Google Scholar 

  27. A. Nikoozadeh, B. Murmann, An analysis of latch comparator offset due to load capacitor mismatch. IEEE Trans. Circuits Syst. II 53(12), 1398–1402 (2006)

    Article  Google Scholar 

  28. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2001)

    Google Scholar 

  29. M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1440 (1989)

    Article  Google Scholar 

  30. B. Razavi, B.A. Wooley, Design techniques for high-speed, high-resolution comparators. IEEE J. Solid-State Curcuits 27(12), 1916–1926 (1992)

    Article  Google Scholar 

  31. K.-L.J. Wong, C.-K.K. Yang, Offset compensation in comparators with minimum input-referred supply noise. IEEE J. Solid-State Circuits 39(5), 837–840 (2004)

    Article  Google Scholar 

  32. E.L. Wong, P.A. Abshire, M.H. Cohen, Floating gate comparator with automatic offset manipulation functionality. IEEE international symposium on circuits and systems, vol. 1, pp. 529–532 (2004)

    Google Scholar 

  33. E. Rodriguez-Villegas, A 0.9V offset compensated FGMOS comparator, IEEE international symposium on circuits and systems, vol. 3, pp. 2160–2163 (2005)

    Google Scholar 

  34. D.G. Chen, A. Bermak, A low-power dynamic comparator with digital calibration for reduced offset mismatch. IEEE international symposium on circuits and systems, pp. 1283–1286 (2012)

    Google Scholar 

  35. J. Lu, J. Holleman, A low-power high-precision comparator with time-domain bulk-tuned offset cancellation. IEEE Trans. Circuits Syst. I 60(5), 1158–1167 (2013)

    Article  MathSciNet  Google Scholar 

  36. Y.L. Wong, M.H. Cohen, P.A. Abshire, A 1.2-GHz comparator with adaptable offset in 0.35-\(\upmu \)m CMOS. IEEE Trans. Circuits Syst. I 55(9), 2584–2593 (2008)

    Article  MathSciNet  Google Scholar 

  37. J. He, S. Zhan, D. Chen, R.L. Geiger, Analyses of static and dynamic random offset voltages in dynamic comparators. IEEE Trans. Circuits Syst. I 56(5), 911–919 (2009)

    Article  MathSciNet  Google Scholar 

  38. H.J.M. Veendrick, The behaviour of flip-flops used as synchronizers and prediction of their failure rate. IEEE J. Solid-State Circuits 15(2), 169–176 (1980)

    Article  Google Scholar 

  39. H. Weinrichter, F. Hlawatsch, Stochastische Grundlagen nachrichtentechnischer Signale (Springer, New York, 1991)

    Book  Google Scholar 

  40. P.M. Figueiredo, Comparator metasability in the presence of noise. IEEE Trans. Circuits Syst. I 60(5), 1286–1299 (2013)

    Article  MathSciNet  Google Scholar 

  41. P. Nuzzo, F. De Bernardinis, P. Terreni, G. Van der Plas, Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans. Circuits Syst. I 55(6), 1441–1454 (2008)

    Article  MathSciNet  Google Scholar 

  42. S. Park, M.P. Flynn, A regenerative comparator structure with integrated inductors. IEEE Trans. Circuits Syst. I 53(8), 1704–1711 (2006)

    Article  Google Scholar 

  43. A. Boni, C. Morandi, S. Padoan, A 2.5-V BiCMOS comparator with current-mode interpolation. IEEE J. Solid-State Circuits 34(6), 892–897 (1999)

    Article  Google Scholar 

  44. A. Boni, G. Chiorboli, C. Morandi, Dynamic characterisation of high-speed latching comparators. IET Electron. Lett. 36(5), 402–404 (2000)

    Article  Google Scholar 

  45. B. Goll, H. Zimmermann, Simple creation of half and full frequency, inverted and non-inverted clock signals with maximum 10ps delay time differences in 120nm CMOS, Austrochip 2006, pp. 143–148 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Goll .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goll, B., Zimmermann, H. (2015). Fundamentals of Clocked, Regenerative Comparators. In: Comparators in Nanometer CMOS Technology. Springer Series in Advanced Microelectronics, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44482-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44482-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44481-8

  • Online ISBN: 978-3-662-44482-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics