Skip to main content

Self-organization and Size Effects in Amorphous Silicon

  • Chapter
  • First Online:
  • 1189 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 205))

Abstract

Self-organization and size effects in amorphous silicon have been investigated by modelling of the structure at nanoscale. The size effect related to the disorder in silicon is treated by the free energy balance in nanometric clusters using valence force field theory. The computed structural and energetical parameters of three continuous random network (CRN) models of amorphous silicon with 2,052, 156 and 155 atoms are compared with the experimental values. In order to show the importance of the interfaces between different a-Si clusters, two networks of 200 and 205 atoms were modelled separately and then linked using an amorphous and a crystalline interface. Also the voids in the a-Si clusters are investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.N. Shipway, E. Katz, I. Willner, Chem. Phys. Chem. 1(1), 18–52 (2000)

    Google Scholar 

  2. C.B. Murray, C.R. Kagan, M.G. Bawendi, Annual. Rev. Mater. Sci. 30, 545 (2000)

    Article  Google Scholar 

  3. A.K. Boal, F. Ilhan, J.E. DeRouchey, T.T.-Albrecht, T.P. Russell, V.M. Rotello, Nature, 404, 746 (2000)

    Google Scholar 

  4. A. Madhukar, Q. Xie, P. Chen, A. Konkar, Appl. Phys. Lett. 64(20), 2727 (1994)

    Article  Google Scholar 

  5. J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. André, O. Vatel, Appl. Phys. Lett. 64(2), 196 (1994)

    Article  Google Scholar 

  6. T.I. Kamins, E.C. Carr, R.S. Williams, S.J. Rosner, J. Appl. Phys. 81(1), 211 (1997)

    Article  Google Scholar 

  7. R. Bashir, A.E. Kabir, K.-J. Chao, Appl. Surf. Sci. 152, 99 (1999)

    Article  Google Scholar 

  8. The International Technology Roadmap for Semiconductors (NTRS), SIA 1997 and 1999

    Google Scholar 

  9. V. Derycke, R. Martel, J. Appenzeller, Ph Avouris, Nanoletters 1(9), 453 (2001)

    Article  Google Scholar 

  10. J. Liu, M.J. Casavant, M. Cox, D.A. Walters, P. Boul, W. Lu, A.J. Rimberg, K.A. Smith, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 303, 125 (1999)

    Article  Google Scholar 

  11. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001)

    Article  Google Scholar 

  12. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  Google Scholar 

  13. P. Servati, D. Striakhilev, A. Nathan, Electron devices. IEEE Trans 50(11), 2227 (2003)

    Article  Google Scholar 

  14. A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, D. Striakhilev, IEEE J. Solid-State Circuits 39, 1477 (2004)

    Article  Google Scholar 

  15. M.S. Shur, M.D. Jacunski, H.C. Slade, M. Hack, J. Soc. Inf. Disp. Blackwell Publishing Ltd 3, 223 (1995)

    Article  Google Scholar 

  16. C.E. Floyd, Jr, R.J. Warp, J.T. Dobbins III, H.G. Chotas, A.H. Baydush, R. Vargas-Voracek, C.E. Ravin, Radiogr Radiol. 218(3), 683 (2001)

    Google Scholar 

  17. R. Gottschalg, T.R. Betts, D.G. Infield, M.J. Kearney, Sol. Energy Mater. Sol. Cells 85(3), 415 (2005)

    Article  Google Scholar 

  18. K. Narayanan, S.F. Preble, Opt. Express 18, 8998–900 (2010)

    Article  Google Scholar 

  19. P. Mehta, N. Healy, N.F. Baril, P.J.A. Sazio, J.V. Badding, A.C. Peacock, Opt. Express 18, 16826 (2010)

    Article  Google Scholar 

  20. C. Li, Z. Liu, C. Gu, X. Xu, Y. Yang, Adv. Mater. 18, 228 (2006)

    Article  Google Scholar 

  21. D. Yu, Y. Xing, Q. Hang, H. Yan, J. Xu, Z. Xi, S. Feng, Physica E 9, 305 (2001)

    Article  Google Scholar 

  22. M. Popescu, J. Optoelectron Adv Mater. 5(5), 1059 (2003)

    Google Scholar 

  23. M. Popescu, J. Optoelectron Adv Mater. 8(6), 2164 (2006)

    Google Scholar 

  24. P. Biswas, R. Atta-Fynn, D.A. Drabold, Phys. Rev. B 69, 195207 (2004)

    Article  Google Scholar 

  25. N. Cooper, C. Goringe, D. McKenzie, Comput. Mater. Sci. 17, 1 (2000)

    Article  Google Scholar 

  26. J.M. Gibson, M.M.J. Treacy, T. Sun, N.J. Zaluzec, Phys. Rev. Lett. 105, 125504 (2010)

    Article  Google Scholar 

  27. A.H.M. Smets, W.M.M. Kessels, M.C.M. van de Sanden, Appl. Phys. Lett. 82, 1547 (2003)

    Article  Google Scholar 

  28. A. Hedler, S.L. Klaumünzer, W. Wesch, Nat. Mater. 3, 804 (2004)

    Article  Google Scholar 

  29. S. Olibet, E. Vallat-Sauvain, C. Ballif, Phys. Rev. B 76, 035326 (2007)

    Article  Google Scholar 

  30. S.R. Ovshinsky, J. Non-Cryst. Solids, 32, 17 (1979)

    Google Scholar 

  31. S.R. Ovshinsky, R. Young, W. Czubatyj, X. U.S. Patent No. 5, 103, 284 (1992)

    Google Scholar 

  32. D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292 (1977)

    Article  Google Scholar 

  33. R.A. Street, J. Kakalios, C.C. Tsai, T.M. Hayes, Phys. Rev. B 35, 1316 (1987)

    Article  Google Scholar 

  34. D.V. Tsu, B. Chao, S.R. Ovshinsky, S. Guha, J. Yang, Appl. Phys. Lett., 71, 1317 (1997)

    Google Scholar 

  35. D. Beeman, R. Tsu, M.F. Thorpe, Phys. Rev.32(2), 874 (1985)

    Google Scholar 

  36. D.V. Tsu, S. Chao, S.R. Ovshinsky, S.J. Jones, J. Yang, S. Guha, R. Tsu, Phys. Rev. B 63(12), 125338 (2001)

    Article  Google Scholar 

  37. D.E. Polk, J. Non-Cryst, Solids 5, 365 (1971)

    Google Scholar 

  38. P. Steinhardt, R. Alben, R. Weaire, J. Non-Cryst, Solids 15, 199 (1974)

    Article  Google Scholar 

  39. M. Popescu, Ph. D. Thesis, Bucharest 1975

    Google Scholar 

  40. P.N. Keating, Phys. Rev. 145(2), 637 (1966)

    Article  Google Scholar 

  41. R.M. Martin, Phys. Rev. B 1(10), 4005 (1970)

    Article  Google Scholar 

  42. F.W. Lytle, D.E. Sayers, A.K. Eikum, J. Non-Cryst. Solids, 13(69), 1973–1974

    Google Scholar 

  43. S.C. Moss, J.F. Graczyk, Phys. Rev. Lett. 23(20), 1167, (1969)

    Google Scholar 

  44. J.F. Graczyk, S.C. Moss, Proc. Intern. Conf. on the Physics of Semiconductors, Cambridge Mass. 17–21 August 1970 (USAEC 1970), p. 658

    Google Scholar 

  45. R. Grigorovici, R. Manaila, Thin Solid Films 1, 343 (1968)

    Article  Google Scholar 

  46. M. Popescu, J. Non-Cryst, Solids 192&193, 140 (1995)

    Google Scholar 

  47. R. Tsu, J. Gonzalez-Hernandez, F.H. Pollack, J. Non-Cryst. Solids 66, 109 (1975)

    Article  Google Scholar 

  48. R. Grigorovici, R. Manaila, Nature 226(5241), 143 (1970)

    Article  Google Scholar 

  49. R. Grigorovici, P. Gartner, Bonding in distorted tetrahedra by spd hybrid bonds, in Tetrahedrally Bonded Amorphous Semiconductors, ed. by D. Adler, H. Fritzsche (Plenum Press, New York, 1985), pp. 51–62

    Chapter  Google Scholar 

  50. L. Guttman, W-Y. Ching, J. Rath, Phys. Rev. Lett. 44, 1513 (1980)

    Google Scholar 

  51. F. Wooten, K. Winer, D. Weaire, Phys. Rev. Lett. 54, 1392 (1985)

    Article  Google Scholar 

  52. R. Grigorovici, P. Gartner, I. Corcotoi, J. Non-Cryst, Solids 114, 256 (1989)

    Google Scholar 

  53. J. Weissmüller, Nanostruct. Mater. 4, 261 (1993)

    Article  Google Scholar 

  54. S.R. Elliott, J. Non-Cryst. Solids 67(6), 711 (1992)

    Google Scholar 

  55. S.R. Elliott, J. Phys.: Condens. Matter 4(38), 7661 (1992)

    Google Scholar 

  56. S.R. Elliott, J. Non-Cryst, Solids 150, 112 (1992)

    Google Scholar 

  57. M. Popescu, F. Sava, H. Bradaczek, J. Phys. IV France 118, 93 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks to Dr. A. Lőrinczi for the discussions on the subject and kindly acknowledge the financial support of the Ministry of the Education, Research, Youth and Sports (Romania) in the frame of the Contract PN2-162/2,012 (NANOVISMAT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Popescu , F. Sava or A. Velea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popescu, M., Sava, F., Velea, A. (2014). Self-organization and Size Effects in Amorphous Silicon. In: Kuncser, V., Miu, L. (eds) Size Effects in Nanostructures. Springer Series in Materials Science, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44479-5_2

Download citation

Publish with us

Policies and ethics