Advertisement

B-Human 2013: Ensuring Stable Game Performance

  • Thomas Röfer
  • Tim Laue
  • Arne Böockmann
  • Judith Müller
  • Alexis Tsogias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)

Abstract

The aim of a soccer game is to score more goals than the opponent does. The chances of doing so increase when all the own players are continuously present on the field. In the RoboCup Standard Platform League (SPL), the only reasons for players not to participate in a game are that they either have been penalized or they have not been ready for the match in the first place. This paper presents some of the methods the 2013 SPL world champion team B-Human uses to ensure a stable and continuous game performance. These include overcoming the weak obstacle avoidance of our 2012 system, reacting to a rule change by an improved detection of the field boundary, better support for analyzing games by logging images in real time, and quality management through procedures the human team members follow when participating in a competition.

Keywords

Grid Point Initial Detection Obstacle Detection Soccer Game Opponent Team 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Röfer, T., Laue, T., Müller, J., Bartsch, M., Batram, M.J., Böckmann, A., Lehmann, N., Maaß, F., Münder, T., Steinbeck, M., Stolpmann, A., Taddiken, S., Wieschendorf, R., Zitzmann, D.: B-Human team report and code release 2012 (2012), Only available online: http://www.b-human.de/wp-content/uploads/2012/11/CodeRelease2012.pdf
  2. 2.
    Röfer, T., Bartsch, M.: Statistics of GameController logs (2013), http://www.tzi.de/spl/pub/Website/Results2013/RoboCup2013Statistics.pdf
  3. 3.
    Engel, M.: Anwendung von maschinellem Lernen zur echtzeitfähigen und kalibrierungsfreien Erkennung von humanoiden Fußballrobotern. Bachlor’s thesis, HTWK Leipzig (2012)Google Scholar
  4. 4.
    Metzler, S., Nieuwenhuisen, M., Behnke, S.: Learning visual obstacle detection using color histogram features. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 149–161. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T., Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-Human team report and code release 2011 (2011), Only available online: http://www.b-human.de/downloads/bhuman11_coderelease.pdf
  6. 6.
    Aquino, A., Akatsuka, C., Mushonga, T., Zhang, Y., He, Y., Lee, D.D.: The University of Pennsylvania RoboCup 2011 SPL Nao soccer team. In: Röfer, T., Meyer, N.M., Savage, J., Saranli, U. (eds.) RoboCup 2011: Robot Soccer World Cup XV Preproceedings, RoboCup Federation (2011)Google Scholar
  7. 7.
    Reinhardt, T.: Kalibrierungsfreie Bildverarbeitungsalgorithmen zur echtzeitfähigen Objekterkennung im Roboterfußball. Master’s thesis, HTWK Leipzig (2011)Google Scholar
  8. 8.
    Google: Snappy – a fast compressor/decompressor (2013), http://code.google.com/p/snappy/

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Röfer
    • 1
  • Tim Laue
    • 1
  • Arne Böockmann
    • 2
  • Judith Müller
    • 2
  • Alexis Tsogias
    • 2
  1. 1.Cyber-Physical SystemsDeutsches Forschungszentrum für Künstliche IntelligenzBremenGermany
  2. 2.Fachbereich 3 -Mathematik und InformatikUniversität BremenBremenGermany

Personalised recommendations