Advertisement

High-Level Commands in Human-Robot Interaction for Search and Rescue

  • Alain Caltieri
  • Francesco Amigoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)

Abstract

Successful search and rescue operations require an appropriate interaction between human users and mobile robots operating on the field. In the literature, use of waypoints for driving the robots has been identified as the main approach to trade-off between fully autonomous robotic systems, which can exclude human users from the control cycle, and completely tele-operated robotic systems, which can excessively burden human users. In this paper, we propose an intermediate level between full autonomy and waypoint guidance. Specifically, human users can issue high-level commands to the robots, like “explore along a direction” and “explore in this area”, which do not explicitly specify the target locations, but introduce a bias over the autonomous target selection performed by the robots. Experimental results show that high-level commands are effective, provided that notification messages coming from the robots are filtered.

Keywords

human-robot interaction search and rescue multirobot systems 

References

  1. 1.
    Olson, E., Strom, J., Morton, R., Richardson, A., Ranganathan, P., Goeddel, R., Bulic, M., Crossman, J., Marinier, B.: Progress towards multi-robot reconnaissance and the MAGIC 2010 competition. Journal of Field Robotics 29(5), 762–792 (2012)CrossRefGoogle Scholar
  2. 2.
    Petersen, K., von Stryk, O.: Towards a general communication concept for human supervision of autonomous robot teams. In: Proc. ACHI, pp. 228–235 (2011)Google Scholar
  3. 3.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: A robot simulator for research and education. In: Proc. ICRA, pp. 1400–1405 (2007)Google Scholar
  4. 4.
    Yanco, H.: Classifying human-robot interaction: An updated taxonomy. In: Proc. IEEE SMC, pp. 2841–2846 (2004)Google Scholar
  5. 5.
    Scholtz, J.: Theory and evaluation of human robot interactions. In: Proc. HICSS (2003)Google Scholar
  6. 6.
    Kaber, D., Endsley, M.: The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task. Theoretical Issues in Ergonomics Science 5(2), 113–153 (2004)CrossRefGoogle Scholar
  7. 7.
    Wang, J., Lewis, M.: Human control for cooperating robot teams. In: Proc. HRI, pp. 9–16 (2007)Google Scholar
  8. 8.
    Velagapudi, P., Kleiner, A., Brooks, N., Scerri, P., Lewis, M., Sycara, K.: RoboCup Rescue Simulation League 2010 Team STEEL (USA). Technical report, Carnegie Mellon University, Pittsburgh (2010)Google Scholar
  9. 9.
    Graber, T., Kohlbrecher, S., Meyer, J., Petersen, K., von Stryk, O., Klingauf, U.: RoboCup Rescue Robot League 2012 Team Hector Darmstadt (Germany). Technical report, Technische Universität Darmstadt (2012)Google Scholar
  10. 10.
    Nevatia, Y., Stoyanov, T., Rathnam, R., Pfingsthorn, M., Markov, S., Ambrus, R., Birk, A.: Augmented autonomy: Improving human-robot team performance in urban search and rescue. In: Proc. IROS, pp. 2103–2108 (2008)Google Scholar
  11. 11.
    Amigoni, F., Caltieri, A., Cipolleschi, R., Conconi, G., Giusto, M., Luperto, M., Mazuran, M.: PoAReT Team Description Paper. In: RoboCup 2012 CD (2012)Google Scholar
  12. 12.
  13. 13.
    Comer, D.: Internetworking with TCP/IP, vol. 1. Addison-Wesley (2006)Google Scholar
  14. 14.
    LaValle, A., Kuffner, J.: Rapidly-exploring random trees: Progress and prospects. In: Donald, B., Lynch, K., Rus, D. (eds.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. CRC Press (2001)Google Scholar
  15. 15.
    Nguyen, V., Gächter, S., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2d range data for indoor mobile robotics. Autonomous Robots 23(2), 97–111 (2007)CrossRefGoogle Scholar
  16. 16.
    Li, Q., Griffiths, J.: Iterative closest geometric objects registration. Computers & Mathematics with Applications 40(10-11), 1171–1188 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Basilico, N., Amigoni, F.: Exploration strategies based on multi-criteria decision making for searching environments in rescue operations. Autonomous Robots 31(4), 401–417 (2011)CrossRefGoogle Scholar
  18. 18.
    Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proc. ICRA, pp. 3016–3023 (2002)Google Scholar
  19. 19.
    Viola, P., Jones, J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  20. 20.
    Kane, B., Velagapudi, P., Scerri, P.: Asking for help through adaptable autonomy in robotic search and rescue. In: Bai, Q., Fukuta, N. (eds.) Advances in Practical Multi-Agent Systems. SCI, vol. 325, pp. 339–357. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Prewett, M., Johnson, R., Saboe, K., Elliott, L., Coovert, M.: Managing workload in human-robot interaction: A review of empirical studies. Computers in Human Behavior 26(5), 840–856 (2010)CrossRefGoogle Scholar
  22. 22.
    Pestman, W.: Mathematical Statistics: An Introduction. de Gruyter (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alain Caltieri
    • 1
  • Francesco Amigoni
    • 1
  1. 1.Artificial Intelligence and Robotics LaboratoryPolitecnico di MilanoMilanoItaly

Personalised recommendations