Spontaneous Reorientation for Self-localization

  • Markus Bader
  • Markus Vincze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)


Humanoid robots without internal sensors (e.g. compasses) tend to lose their orientation after a fall or collision. Furthermore, artificial environments are typically rotationally symmetric, causing ambiguities in self-localization. The approach proposed here does not alter the measurement step in the robot’s self-localization. Instead it delivers confidence values for rotationally symmetric poses to the robot’s behaviour controller, which then commands the robot’s self-localization. The behaviour controller uses these confidence values and triggers commands to rearrange the self-localization’s pose beliefs within one measurement cycle. This helps the self-localization algorithm to converge to the correct pose and prevents the algorithm from getting stuck in local minima. Experiments in a symmetric environment with a simulated and a real humanoid NAO robot show that this significantly improves the system.


Background Model Humanoid Robot Colour Histogram Real Robot Visual Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press (2005)Google Scholar
  2. 2.
    Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots. MIT Press (2011)Google Scholar
  3. 3.
    Bader, M., Brunner, H., Hamböck, T., Hofmann, A., Vincze, M.: Colour Histograms as Background Description: An approach to overcoming the Uniform-Goal Problem within the SPL for the RoboCup WC 2012. In: Proceedings of the Austrian Robotics Workshop, ARW 2012 (2012)Google Scholar
  4. 4.
    Landau, B., Gleitman, H., Spelke, E., et al.: Spatial Knowledge and Geometric Representation in a Child Blindfrom Birth. Science 213(4513), 1275–1278 (1981)CrossRefGoogle Scholar
  5. 5.
    Hermer, L., Spelke, E.S.: A Geometric Process for Spatial Reorientation in Young Children. Nature 370, 57–59 (1994)CrossRefGoogle Scholar
  6. 6.
    Lee, S.A., Winkler-Rhoades, N., Spelke, E.S.: Spontaneous Reorientation Is Guided by Perceived Surface Distance, Not by Image Matching Or Comparison. PLoS ONE 7, e51373 (2012)Google Scholar
  7. 7.
    Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T., Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-Human Team Report and Code Release (2011), Only available online:
  8. 8.
    Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A Probabilistic Approach to Collaborative Multi-Robot Localization. Autonomous Robots 8(3), 325–344 (2000)CrossRefGoogle Scholar
  9. 9.
    Czarnetzki, S., Rohde, C.: Handling Heterogeneous Information Sources for Multi-Robot Sensor Fusion, pp. 133–138 (Sepetmber 2010)Google Scholar
  10. 10.
    Loy, G., Eklundh, J.-O.: Detecting Symmetry and Symmetric Constellations of Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. Part II. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Anati, R., Scaramuzza, D., Derpanis, K., Daniilidis, K.: Robot Localization Using Soft Object Detection. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4992–4999 (May 2012)Google Scholar
  13. 13.
    Anderson, P., Yusmanthia, Y., Hengst, B., Sowmya, A.: Robot Localisation Using Natural Landmarks. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 118–129. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Sturm, J., van Rossum, P., Visser, A.: Panoramic Localization in the 4-Legged League. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 387–394. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Sturm, J., Visser, A.: An appearance-based visual compass for mobile robots. Robotics and Autonomous Systems 57(5), 536–545 (2009)CrossRefGoogle Scholar
  16. 16.
    Deselaers, T., Keysers, D., Ney, H.: Features for Image Retrieval: An Experimental Comparison. Information Retrieval 11, 77–107 (2008), doi:10.1007/s10791-007-9039-3CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Markus Bader
    • 1
  • Markus Vincze
    • 1
  1. 1.Automation and Control Institute (ACIN)Vienna University of TechnologyViennaAustria

Personalised recommendations